

DALICAP PRODUCT

High Q, RF/Microwave Multilayer Ceramic Capacitor Single Layer Chip Ceramic Capacitor Multilayer Ceramic Capacitor Broadband Ceramic Capacitor Thin Film Circuit

2025

The first-class high-end electronic components supplier in the world

ABOUT DALICAP

DALICAP TECH.

- ◆ Leading supplier of HiQ, RF/Microwave MLCC, especially in the fields of MRI, Telecom, semiconductor RF power, wireless broadcast, laser, testing and analyzing instruments, radar and aerospace etc.
- ◆ Years' experience in Telecom industry and working with clients in the time of 2G->3G->4G shift to 5G.
- ◆ With years of solid experience in the industry, including R&D, material, design, process and manufacturing
- ◆ Individual IP for new product development to insure the competence in the industry
- ◆ Standard HiQ/RF MLCC or customized(ask sales for more information)
- ◆ New production capacity to match the continuous increasing demand worldwide
- ◆ Global network technically and commercially to support clients

Dalicap attaches great importance to trusted worldwide customers, and has always been adhering to the concept of quality first and service first. As an important strategy of Dalicap, the company invested 50 Million USD and put into use a fully new high-end electronic component plant in 2021, with a total land area of 40,000 square meters and a total construction area of 56,000 square meters. It will achieve the capacity of 3 billion/Y microwave MLCC products. In addition to meeting the market demand for 5G telecommunication, it is also expected to make achievements in automotive electronics and other fields in the future.

The company will continue to adhere to the business philosophy of "focus on R&D, quality first" and do our best to create a brilliant future together with you.

ADVANTAGES OF DALICAP

R&D and Engineering Capability

During the phase of R&D, the electromagnetic field simulation technology is introduced and the Coaxial Resonance Line is applied on the measurement of Q value of MLCC. An individual RF testing system is used to simulate the working conditions of MLCC, so as to ensure the technical performance and continuous improvement.

Production Environment and Facilities

Standard 10K-class clean room and temperature control contribute to production process and quality stability. With advanced production facilities, Dalicap ensures the consistency of the output and product quality.

High frequency/RF technical Support

Dalicap has S parameter test fixtures, calibrated by TRL, to measure the S parameter of capacitors, by which S2P file would be initiated and available to customers.

34A Coaxial Resonance Line system is dedicated to measuring the ESR and Q value, which is the most effective method to monitor the performance in the industry.

RF power testing system is built up for the measurement of the temperature rise under the working power, and breakdown voltage is also monitored.

With years of solid experience in the industry, Dalicap provides customized products and technical support as well.

Quality Certification

ISO 9001 & ISO 14001 are certified. RoHS is compliant.

PRODUCT CONTENTS

General Purpose Non-Magnetic Multilayer Ceramic Capacitors

Non-Magnetic, Suitable for MRI and other equipment requiring non-magnetic.

33-39

Product Features

SIZE: 0603, 0805, 1206, 1210

Non-Magnetic Chip Resistors

40-44

Product Applications

MRI medical equipment, Measurement instrument, other non-magnetic applications.

SIZE: 0603, 0805, 1206

Single Layer Chip Ceramic Capacitor

45-48

Product Applications

Suitable for RF/Microwave phased array radar T/R assembly, and filter, DC blocking and bypass at microwave frequencies.

Thin Film Circuit

59-61

Product Applications

Substrates for microwave/millimeter wave application, microwave/millimeter wave device, and high-speed optical communication device.

◆ Product Features

High Q, High RF Current/Voltage, High RF Power, Low ESR/ESL, Low Noise, Ultra-Stable Performance. Lead capacitors' surface are coated with special coating, which can prevent arc and corona from occurring at high RF voltages.

◆ Product Applications

Typical Circuit Applications: High Frequency/Microwave/ RF Amplifiers, Low Noise Amplifiers, LC Filters.

Typical Applications Field: Mobile Base Stations, Repeaters, Wireless Broadcasting Equipments,

Radio Stations, Radar, MRI Equipments, HSR Signal Transponders.

♦ Part Numbering

① Series: Dalicap 70 Series High Q High Power Capacitor, Temperature Coefficient: 0 ± 30ppm/℃.

2 Dimensions Code

unit:inch(millimeter)

	DLC70P	DLC70A	DLC70D		
Length	.063 ± .006 (1.60 ± 0.15)	.055(+.015~—.010) (1.40+0.38~—0.25)	$.079 \pm .008$ (2.00 ± 0.20)		
Width	.031 ±.006(0.80 ±0.15)	.055 ±.010(1.40 ± 0.25)	$.049 \pm .008 (1.25 \pm 0.20)$		
Thickness	.031±.006 (0.80±0.15)	.057(1.45)max	.057(1.45)max		
	DLC70B	DLC70C	DLC70E		
Length	.110(+.025~010) (2.79+0.63~-0.25)	.225(+.020~—.010) (5.72+0.51~—0.25)	.380(+.015~010) (9.65+0.38~-0.25)		
Width	$.110 \pm .010 (2.79 \pm 0.25)$.250 ±.015(6.35 ±0.38)	.380 ± .010(9.65 ± 0.25)		
Thickness	.100(2.54)max	.150(3.81)max	.170(4.32)max		

③ Rated Capacitance

Capacitance is less than 10pF; for example: 1R0=1.0pF, R denotes decimal point.

Capacitance greater than 10pF; for example: 101=100pF, the third number is the power of 10.

4 Tolerance

Code	А	В	С	D	F	G	J
Tolerance	±0.05pF	±0.1pF	±0.25pF	±0.5pF	±1%	±2%	±5%

⑤ Termination Type

Code	W	Р	L
Туре	100% Sn Solder over	100% Sn Solder over Copper	90% Sn 10% Pb Solder over
	Nickel Plating	Plating (RoHS Compliant)	Nickel Plating (Tin/Lead)

Code	MS	AR	RR	AVV	RW
Туре	Microstrip	Axial Ribbon	Radial Ribbon	Axial Wire	Radial Wire
Code	MN	AN	FN	BN	RN
Туре	Non-mag Microstrip	Non-mag Axial Ribbon	Non-mag Radial Ribbon	Non-mag Axial Wire	Non-mag Radial Wire

© Rated Voltage

Code	Rated Voltage(V)	Code	Rated Voltage(V)	Code	Rated Voltage(V)
500	50	301	300	252	2500
101	100	501	500	302	3000
151	150	601	600	362	3600
201	200	102	1000	722	7200
251	250	152	1500		

① Laser Marking

X denotes Marking. Capacitance is less than 10pF; for example: the marking of 1.0pF is 1R0. Capacitance greater than 10pF; for example: the marking of 100pF is 101.

® Packaging Type

	70P	70D	70A	70B	70C	70E
T: Horizontal Taping		√	√	V	V	V
TV: Vertical Taping		√	√	V	V	
B: Plastic Bag			√			
C: Waffle Box					V	V

◆ Performance Requirements

Capacitors are designed and manufactured to meet the requirements of MIL-PRF-55681 and MIL-PRF-123.

♦Capacitance & Rated Voltage Table

	Rated						Size(inch)					
	WVDC	DI	_C70P	DI	.C70A	D	LC70D	DI	_C70B	DI	_C70C	DI	_C70E
Cap.pF		(0603)			0505)		0805)		1111)		2225)	(3838)	
Cap.pF	Code	Tol.	Rated WVDC	Tol.	Rated WVDC	Tol.	Rated WVDC	Tol.	Rated WVDC	Tol.	Rated WVDC	Tol.	Rated WVDC
0.1	OR1							102					
0_2	OR2							Α.					
0.3	OR3							В.					
0.4	OR4												
0.5	OR5												
0.6	OR6												
0.7	OR7												
0.8	OR8												
0.9	OR9												
1.0	1R0												
1.1	1R1												
1.2	1R2												
1.3	1R3	Α,		Α.		Λ							
1.4	1R4					Α,							
1.5	1R5	В.		В.		В,							
1.6	1R6	С.		C.		С,							
1.7	1R7	D.		D.		D.		Α.					
1.8	1R8							В,					
1.9	1R9							C,					
2.1	2R0 2R1		05014					D.					
2.2	2R2		250V		150V		250V		500V	В,		В,	
2.4	2R4		Code		Code		Code		Code	C,		C,	
2.7	2R7		251		151		251		501	D.		D.	
3.0	3R0		or		or		or		or	50	2500V	75.0	3600V
3.3	3R3		300V		300V		500V		1500V		Code		Code
3.6	3R6		Code		Code		Code		Code		252		362
3.9	3R9		301		301		501		152		or		or
4.3	4R3				3.7.3						3600V		7200V
4.7	4R7										Code		Code
5.1	5R1										Accessed to		722
5.6	5R6										362		
6.2	6R2												
6.8	6R8	B.		R		В							
7.5	7R5	C.		В,		В.							
8.2	8R2	D.		C.		C,							
9.1	9R1			D.		D.							
10	100												
11	110												
12	120												
13	130												
15	150												
16	160	F.		F.		F.		F.		F,		F.	
18	180			G,				G,				G.	
20	200	G.				G,				G,			
22	220	J.		J.		J.		J.		Ú.		J.	
24	240												
27	270												
30	300												
33	330												
36	360												
39	390												
43	430												
47	470												

♦Capacitance & Rated Voltage Table

	Rated						Size	(inch)				
Cap.pF	WVDC		LC70P 0603)		C70A 0505)		LC70D 0805)		C70B		_C70C 2225)		LC70E 3838)
Cap.pF	Code	Tol.	Rated WVDC	Tol.	Rated WVDC	Tol.	Rated WVDC	Tol,	Rated WVDC	Tol.	Rated WVDC	Tol.	Rated WVDC
51	510								500V		2500V		
56	560		250V				250V Code		Code		Code		
62	620	F,	Code		150V				501		252		
68	680		251 or		Code		251						3600
75	750	G,	300V		151		or 500V		or 1500V		3600V		Cod
82	820	J.	Code 301		or		Code		Code		Code		362
91	910		301		200V		501		152		362		or
100	101			ķ.	Code				102		502		7200
110	111				201		250V		300V				Cod
120	121				201		Code		Code		2500V		722
130	131						251		301		Code		
150	151								OF		252		
160	161								1000V		7000		
180	181			F,		F.		F.	Code	F.	3000V	E	
200	201			G,		G.		1000	102			F,	3600
220	221			J.				G,		G,	Code	G,	Cod
240	241	4		1100	150V	J.	250V	J.	200V Code	J.	302	J.	362
270	271				Code		Code						or
300	301				151		251		201				5000
330	331				or		OF		or 600V		1500V Code		Cod
360	361				300V		300V				152		502
390	391				Code		Code		Code 601		or	1	
430	431				301		301		CASA!		2000V Code		2500
470	.471										Code 202		Cod
510	511								100V				252
560	561								Code		1000V		or
620	621				501		40014		101		Code		3600
680	681				50V Code		100V Code		or		102		Cod
750	751				500		101		300V				362
820	821	4			200V		or 200V		Code		1500V		1000
910	911				Code		Code		301				Cod
1000	102				201		201				Code 152		102
1100	112								300V				
1200	122								Code				2500
1500	152								301		500V		2000000
1800	182										Code 501		Cod
2200	222										or		252
2400	242										1000V	13	
2700	272							G.	100V		Code 102		500V
3000	302							11100	Code 101		102		Code
3300	332							J.	or				501
3600	362								200V Code				or
3900	392								201				20001
4300	432												Code 202
4700 5100	472												202
200 1 200 0	512								500				
10000	562								50VCode500 or 100VCode101				
10000	103								SOVCODE!()				

♦DLC70 Lead Type and Dimensions

W/L/P	MS/MN	AR/AN
Tc T	To I	Tre Tre
RR/FN	RW/RN	AW/BN
Ĭ v	Ĭu	I Te

unit: inch(millimeter)

	Term.		Capacitor Dir	mensions			District				
Series	Code	Length (Lc)	Width (Wc)	Thick. (Tc)	Overlap (B)	Length (LL)	Width (WL)	Thickness (TL)	Plated Material		
DLC70B	MS/MN	.135 ± .015 (3.43 ± 0.38)	.110 ± .010 (2.79 ± 0.25)	.100 (2.54)max	.016~.039 (0.40~1.00)	.250 (6.35)min	.093 ± .005 (2.36 ± 0.13)	.004 ± .001 (0.10 ± .025)	100% Ag		
	MS/MN AR/AN					.500 (12.70) min	.240 ± .005 (6.10 ± 0.13)	.008 ± .001 (0.20 ± 0.025)	Silver- plated Copper		
DLC70C	RR/FN	.245 ± .025	.250 ± .015	.165 (4.19) max	000000000000000000000000000000000000000	.020 ~.047	.354 (9.00) min	.118 ± .005 (3.00 ± 0.13)	.012 ± .001 (0.30 ± 0.025)	Silver- plated Copper	
	RW/RN	(6.22 ± 0.64)	(6.35 ± 0.38)			(4.19) max	(4.19) max	(0.50~1.20)	.709 (18.00) min		Dia.=.031±.004
	AW/BN					.906 (23.00) min	3.0)	5			
	MS/MN					.728 (18.50)	$.350 \pm .020$ (8.89 ± 0.50)	.008 ± .001	Silver- plated		
	AR/AN					min	$.315 \pm .010$ (8.00 ± 0.25)	(0.20 ± .025)	Copper		
DLC70E	RR/FN	.380 +.015 ~010 (9.65 +0.38 ~-0.25)	.380 ± .010 (9.65 ± 0.25)	.177 (4.50)max	.024~.059	.354 (9.00) min	.118 ± .005 (3.00 ± 0.13)	.012 ± .001 (0.30 ± 0.025)	Silver- plated Copper		
	RW/RN					.709 (18.00) min	Dia.=.03	31±.004	Silver-		
	AW/BN					.906 (23.00) min	3.0)	80±0.10)	wire		

♦Performance

Item	Specifications
Quality Factor (Q)	Greater than 10,000, C \leq 1000pF, at 1 \pm 0.1 MHz. Greater than10,000, C $>$ 1000pF, at 1 \pm 0.1 KHz.
	Test Voltage: Applied Rated Voltage, and 500V maximum.
Insulation Resistance (IR)	10^5 Megohms min. @ $+25^{\circ}\mathrm{C}$.
	10^4 Megohms min. @ $+125^{\circ}\mathrm{C}$.
Rated Voltage	See Rated Voltage Table
	250% of Rated Voltage for 5 seconds, Rated Voltage ≤500VDC
Dielectric Withstanding Voltage (DWV)	150% of Rated Voltage for 5 seconds, 500VDC $<$ Rated Voltage \le 1250VDC
	120% of Rated Voltage for 5 seconds, Rated Voltage > 1250VDC
	-55 °C ~ +125 °C(70B 0.1pF ~ 1000pF can reach to -55 °C ~ +175 °C)
Operating Temperature Range	Notes: For higher temperature, please contact with Dalicap.
Temperature Coefficient (TC)	0 ± 30 ppm/°C; (−55°C ~ +175°C, 0 ± 60 ppm/°C)
Capacitance Drift	\pm 0.2% or \pm 0.05pF, whichever is greater.
Piezoelectric Effects	None
Termination Type	See Termination Type Table

Capacitors are designed and manufactured to meet the requirements of MIL-PRF-55681 and MIL-PRF-123.

◆Environmental Tests

Item	Specifications	Method			
Thermal Shock	DWV: the initial value IR: Shall not be less than 30% of the initial value Capacitance change: no more than 0.5% or 0.5pF.	MIL-STD-202, Method 107, Condition A. At the maximum rated temperature stay 15 minutes. The time of removing shall not be more than 5 minutes. Perform the five cycles.			
Moisture Resistance	whichever is greater.	MIL-STD-202, Method 106.			
Humidity (steady state)	DWV: the initial value IR: the initial value Capacitance change: no more than 0.3% or 0.3pF. whichever is greater.	MIL-STD-202, Method 103, Condition A, with 1.5 Volts D.C. applied while subjected to an environment of 85 °C with 85% relative humidity for 240 hours minimum.			
Life	IR: Shall not be less than 30% of the initial value Capacitance change: no more than 2.0% or 0.5pF. whichever is greater.	MIL-STD-202, Method 108, for 2000 hours, at 125 °C. 200% of Rated Voltage for Capacitors, Rated Voltage ≤500VDC 120% of Rated Voltage for Capacitors, 500VDC < Rated Voltage ≤1250VDC 100% of Rated Voltage for Capacitors, Rated Voltage > 1250VDC			

◆Tape & Reel Specifications

	A0 (mm)	B0 (mm)	K0 (mm)	(mm)	P0 (mm)	P1 (mm)	T (mm)	F (mm)	Qty/min	Qty/reel	Tape Material
0505-H	1.50	1.75	1.15	8.00	4.00	4.00	0.22	3.50	500	3000	Plastic
0505-H	1.40	1.80	0.95	8.00	4.00	4.00	0.25	3.50	500	3000	Plastic
0505-H	1.50	1.75	1.30	8.00	4.00	4.00	0.22	3.50	500	3000	Plastic
0505-V	1.10	1.60	1.40	8.00	4.00	4.00	0.30	3.50	500	1000	Plastic
1111-H	2.85	3.50	1.95	8.00	4.00	4.00	0.25	3.50	500	2000	Plastic
1111-H	2.85	3.60	2.40	8.00	4.00	4.00	0.25	3.50	500	2000	Plastic
1111-V	2.30	3.55	2.70	12.00	4.00	4.00	0.40	5.50	500	1500	Plastic
2225-H	6.70	6.20	3.40	16.00	4.00	12.00	0.30	7.50	100	500	Plastic
2225-V	4.10	6.15	6.55	16.00	4.00	8.00	0.40	7.50	100	300	Plastic
3838-H	10.10	10.10	3.30	16.00	4.00	16.00	0.30	7.50	50	300	Plastic
3838-H	10.10	10.10	4.30	16.00	4.00	16.00	0.40	7.50	50	200	Plastic

Horizontal Orientation

Vertical Orientation

◆Product Features

High Q, High RF Current/Voltage, High RF Power, Low ESR/ESL, Low Noise, Ultra-Stable Performance.

Product Applications

High RF Power Amplifiers, High Power Filter Networks, Wireless Demodulation.

♦Part Numbering

① Series: Dalicap 70 Series High RF Power Capacitor, Temperature Coefficient: 0 ± 30ppm/℃.

2 Dimensions Code

unit:inch(millimeter)

	DLC70F	DLC70G	DLC70L
Length	.614(+.015~010) (15.60+0.38~-0.25)	.760(+.025~010) (19.30+0.64~-0.25)	$1.350 \pm .050$ (34.29 ± 1.27)
Width	.433 ±.010(11.0 ±0.25)	.760(+.025~010) (19.30+0.64~-0.25)	1.350 ±.050(34.29±1.27)
Thickness	.197(5.00)max	.201(5.10)max.	.197(5.00)max

③ Rated Capacitance

Capacitance is less than 10pF; for example: 1R0=1.0pF, R denotes decimal point.

Capacitance is not less than 10pF; for example: 101=100pF, the third number is the power of 10.

4 Tolerance

Code	В	С	D	F	G	J
Tolerance	±0.1pF	±0.25pF	±0.5pF	±1%	±2%	±5%

⑤ Termination Type

Code	W	P	L
Туре	100% Sn Solder over Nickel Plating	100% Sn Solder over Copper Plating (RoHS Compliant)	90% Sn 10% Pb Solder over Nickel Plating (Tin/Lead)

⑤ Termination Type

Code	MS	AR	AW	RW
Туре	Microstrip	Axial Ribbon	Axial Wire	Radial Wire

Code	MN	AN	BN	RN
Туре	Non-mag	Non-mag	Non-mag	Non-mag
	Microstrip	Axial Ribbon	Axial Wire	Radial Wire

Rated Voltage

Code	Rated Voltage(V)	Code	Rated Voltage(V)
301	300	302	3000
501	500	362	3600
102	1000	502	5000
152	1500	802	8000
202	2000	103	10000
252	2500		

① Laser Marking

X denotes Marking. Capacitance is less than 10pF; for example: the marking of 1.0pF is 1RO. Capacitance is not less than 10pF; for example: the marking of 100pF is 101.

® Packaging Type

	70F	70G	70L
C: Waffle Tray packaging	V	\checkmark	✓
I: Special packaging		Consult with DALICAP	

◆ Performance Requirements

Capacitors are designed and manufactured to meet the requirements of MIL-PRF-55681 and MIL-PRF-123.

◆Capacitance & Rated Voltage Table

	Rated			Size	e(inch)		
Cap.	WVDC	D	LC70F (6040)		LC70G (7575)	DI.	C70L 30130)
Cap.pF	Code	Tol.	Rated	Tol.	Rated	Tol.	Rated
1.0	1RO	101.	WVDC	1071	WVDC	101.	WVDC
1.2	1R2						
1.5	1R5						
1.6	1R6						
1.8	1R8						
2.2	2R2	D		D			
2.7	2R7	В,		В,			
3.3	3R3	С,		C,			
3.6	3R6	D.		D.			
3.9	3R9						
4.7	4R7		5000V				
5.6	5R6	1	Code502		500014		
6.8	6R8		Extended		5000V		
8.2	8R2		Voltage		Code502		
10	100		8000V		Extended		
12	120		Code802		Voltage		
15	150		COGCOOL		8000V		
18	180				Code802		
22	220						
27	270						
33	330						
39	390						
47	470						
56	560						
68	680			F,			
82	820						
100	101			G,			
120	121			J.			
150	151	F,					
180	181	G,	3000V				
200	201	J.	Code302				
220	221		Extended				
270	271						
300	301		Voltage				
330	331		5000V				
390	391		Code502		3000V		10101
470	471				Code302	G,	10KV
560	561				Extended	J.	Code
680	681				Voltage		103
820	821		2000V				
1000	102		Code202		5000V		
1200	122		Extended		Code502		
1500	152		Voltage				
1800	182		3000V				
2200	222		Code302				

	Rated WVDC			Size	(inch)	-					
Cap.	WADC		DLC70F (6040)		LC70G (7575)	DLC70L (130130)					
Cap.pF	Code	Tol.	Rated WVDC	Tol.	Rated WVDC	Tol.	Rated				
2700	272		1000V		3000V Code302						
3300	332	F,	Code102		Extended						
4700	472	G,	Extended		Voltage 5000V						
5100	512	J.	Voltage	6	6	6	5		Code502	G,	5KV
5600	562	. St	2000V				1000V	J.	Code		
6800	682		Code202	G,	Code102		502				
7500	752			J.	Extended Voltage						
8200	822				3000V						
10000	103			,	Code302						
12000	123				2000V						
15000	153				Code						
18000	183				202		3000/				
20000	203						Code				
22000	223				Ï		302				
33000	333										
47000	473					J.					
56000	563					6					
68000	683						1000\				
82000	823						Code				
100000	104 124						102				

♦ DLC70 Lead Type and Dimensions

W/L/P	MS/MN	AR/AN
Te E	ET.	T.
FN	RW/RN	AW/BN
Le Tr. Tc We Le	T. To	TE

unit: inch(millimeter)

	Term.	Į.	Capacitor Dime	ensions			Lead Dimension	ons	Plated	
Series	Code	Length (Lc)	Width (Wc)	Thick. (Tc)	Overlap (B)	Length (LL)	Width (WL)	Thickness (TL) .008 ± .001 (0.20 ± 0.025) .030±.004 .76±0.10) .008 ± .001 (0.20 ± 0.025) .030±.004 .76±0.10)	Material	
	MS/MN AR/AN	614				.748 (19.00) min	.350 ± .010 (8.89 ± 0.25)	.008 ± .001 (0.20 ± 0.025)	Silver- plated Copper	
DLC70F	RW/RN	+.015~010 (15.60 +0.38~-0.25)	.433 ± .010 (11.00 ± 0.25)	.197 (5.00) max	(5.00)	.748 (19.00) min	Dia.=.030±.004		Silver-	
	AW/BN					.906 (23.00) min	(0.	Thickness (TL) .008 ± .001 (0.20 ± 0.025) .030±.004 0.76±0.10) .008 ± .001 (0.20 ± 0.025) .030±.004 0.76±0.10) .012 ± .001 (0.30 ± 0.025) .012 ± .001	Wire	
	MS/MN AR/AN	.760	.760			.748 (19.00) min	.591 ± .010 (15.00 ± 0.25)		Silver- plated Copper	
DLC70G	RW/RN	+.025~010 (19.30 +0.64~-0.25)	+.025~010 (19.30	. 201 (5.10) max	.024~.079 (0.60~2.00)	.748 (19.00) min	100000000000000000000000000000000000000		Silver- Wire	
	AW/BN					.906 (23.00) min	(0.	/6±0.10)	Wile	
	MN/AN	1.350±.050	0 1.350±.050	.197 (5.00)	.039~.071	.748 (19.00) min	1.299 ± .020 (33.00 ± 0.50)		Silver-	
DLC70L	FN	(34,29±1.27)	(34.29±1.27)	max	(1.00~1.80)	.669 (17.00) min	.157 ± .008 (4.00 ± 0.20)	.012 ± .001 (0.30 ± 0.025)	Copper	

◆Performance

ltem	Specifications
Quality Factor (Q)	Less than 1000pF, Q value more than 2000, Test frequency 1MHz; More than 1000pF, Q value more than 2000, Test frequency 1KHz;
Insulation Resistance (IR)	Test Voltage: 500V 10^5 Megohms min. @ +25 °C at rated WVDC. 10^4 Megohms min. @ +125 °C at rated WVDC.
Rated Voltage	See Rated Voltage Table
Dielectric Withstanding Voltage (DWV)	250% of Rated Voltage for 5 seconds, Rated Voltage ≤500VDC 150% of Rated Voltage for 5 seconds, 500VDC < Rated Voltage ≤1250VDC 120% of Rated Voltage for 5 seconds, Rated Voltage >1250VDC
Operating Temperature Range	−55°C to +125°C Notes: For higher temperature, please contact with Dalicap.
Temperature Coefficient (TC)	0 ± 30 ppm/°C
Capacitance Drift	\pm 0.2% or \pm 0.05pF, whichever is greater.
Piezoelectric Effects	None

Capacitors are designed and manufactured to meet the requirements of MIL-PRF-55681 and MIL-PRF-123.

◆Environmental Tests

Item	Specifications	Method
Thermal Shock	DWV: the initial value IR: Shall not be less than 30% of the initial value Capacitance change:	MIL-STD-202, Method 107, Condition A. At the maximum rated temperature stay 15 minutes. The time of removing shall not be more than 5 minutes. Perform the five cycles.
Moisture Resistance	no more than 0.5% or 0.5pF. whichever is greater.	MIL-STD-202, Method 106.
Humidity (steady state)	DWV: the initial value IR: the initial value Capacitance change: no more than 0.3% or 0.3pF. whichever is greater.	MIL-STD-202, Method 103, Condition A, with 1.5 Volts D.C. applied while subjected to an environment of 85 °C with 85% relative humidity for 240 hours minimum.
Life	IR: Shall not be less than 30% of the initial value Capacitance change: no more than 2.0% or 0.5pF. whichever is greater.	MIL-STD-202, Method 108, for 2000 hours, at 125 °C. 200% of Rated Voltage for Capacitors, Rated Voltage ≤ 500VDC 120% of Rated Voltage for Capacitors, 500VDC < Rated Voltage ≤ 1250VDC 100% of Rated Voltage for Capacitors, Rated Voltage > 1250VDC

Capacitor Assemblies Offering

◆Product Features

High Operating Voltage, High Operating Current, Extended Capacitance, Tighter Tolerances, High Reliability, High Q, Ultra-low ESR, Non-Magnetic.

◆Typical Applications Field

High Power RF, Medical Electronics, Broadcast, Semiconductor Manufacturing, High Magnetic Environments, Inductive Heating.

◆Part Numbering

Capacitance: For capacitor values requiring 3 significant digits,

e.g. 1222.5pF = 1222R5

e.g. DLCV66NC101F252X

Silver bracket assembly with six DLC70 pieces in parallel, Capacitance is 100pF,

Capacitance tolerance is $\pm 1\%$, WVDC is 2500 V and Laser marking.

e.g. DLCY26NG1222R5G203X

Silver bracket assembly with two DLC70 pieces in series, Capacitance is 1222.5pF,

Capacitance tolerance is $\pm 2\%$, WVDC is 20,000V and Laser marking.

◆Capacitance and Voltage

By Buyer's requirements using existing drawings, mechanical sketches, or we can help with capable modeling of assemblies thermal rise predictions.

Capacitor Assemblies Offering

♦Typical Assembly Configurations

① Parallel Assemblies

unit: inch(millimeter)

	70B	70C	70E	70F	70G		
Lead Material		Silver-plat	ed Copper or silver		•		
Lead Thickness	.004 or .010	or .010 (0.1 or 0.25) .010 or .020 (0.25 or 0.51)					
Lead Length (max.)	.50 (12.7)	.75 (19.1)	2.0 (50.8)				
Capacitor Spacer (typ.)	.050 to .07	8 (1.3 to 2)	.06 to .10 (1.5 to 2.5) .078 to .197		(2.0 to 5.0)		
Mtg Configuration		Horizontal/Vertical					

② Series Assemblies

unit: inch(millimeter)

	70C	70E	70F	70G		
Lead Type		L-Bracke	t			
Lead Material	u.	Silver-plated Coppe	r or silver			
Lead Thickness	.010 (0.25)	(0.25) .010 or .020 (0.25 or 0.51)				
Lead Length (max.)	.75 (19.1)	1.0 (25.4	1)			
Capacitor Spacer (typ.)		0 to .157 (0	to 4)			
Mtg Configuration		Horizonta	al			

3 Epoxy Molding

Product Features

Ultra-Low ESR, High Working Voltage, High RF Power, High Self-Resonance Frequency.

◆Product Applications

Typical Circuit Applications: High Power Filter Networks, Mixers, Couplers, Matching Networks, Output Coupling, Antenna Coupling, DC blocking, Bypass.

Typical Applications Field: VHA/UHF/Microwave Communication Systems, Mobile Base Stations,
Repeaters, Wireless Broadcasting Equipments, Radio Stations,
Radar, WiMAX, Satellite Communications.

♦ Part Numbering

① Series: Dalicap 75 Series Low ESR Microwave Capacitor, Temperature Coefficient: 0 ± 30ppm/°C.

2 Dimensions Code

unit:inch(millimeter)

	DLC75N	DLC75H	DLC75P	DLC75D	DLC75B	DLC75R
Length	$.024 \pm .001$.041±.004	.063 ±.006	.078 ± .010	.110(+.020~010)	.070 ± .006
	(0.60 ± 0.03)	(1.05±0.10)	(1.60 ±0.15)	(2.00 ± 0.25)	(2.79+0.51~-0.25)	(1.78 ± 0.15)
Width	.012 ± .001	.020 ± .004	.031 ± .006	.049±.010	.110 ±.010	.080±.010
	(0.30 ± 0.03)	(0.51 ± 0.10)	(0.80 ± 0.15)	(1.25±0.25)	(2.79 ±0.25)	(2.03±0.25)
Thickness	.012 ±.001 (0.30 ±0.03)	.020 ± .004 (0.51 ± 0.10)	.031 ± .006 (0.80 ± 0.15)	.041±.008 (1.05±0.20)	.102(2.60)max	.120(3.04)max

③ Rated Capacitance

Capacitance is less than 10pF; for example: 1R0=1.0pF, R denotes decimal point.

Capacitance greater than 10pF; for example: 101=100pF, the third number is the power of 10.

4 Tolerance

Code	Α	В	С	D	F	G	J
Tolerance	±0.05pF	±0.1pF	±0.25pF	±0.5pF	±1%	±2%	±5%

⑤ Termination Type

Code	W	Р
Туре	Nickel, Plated 100% Sn(RoHS)	Copper, Plated 100% Sn(RoHS)

Code	Rated Voltage(V)
250	25
500	50
251	250
501	500

① Laser Marking

X denotes Marking. Capacitance is less than 10pF; for example: the marking of 1.0pF is 1R0. Capacitance is not less than 10pF; for example: the marking of 100pF is 101.

N denotes no marking.

® Packaging Type

	75N	75H	75P	75D	75B	75R
T: Horizontal Taping	✓	V	√	✓	\checkmark	√
B: Bulk packaging in a bag			\checkmark	\checkmark		√
TV: Vertical Taping				√	V	

◆ Performance Requirements

Capacitors are designed and manufactured to meet the requirements of MIL-PRF-55681 and MIL-PRF-123.

♦ All products are in compliance with RoHS instruction.

♦Capacitance & Rated Voltage Table

	Rated						Size(i	nch)					
	WVDC	DL	.C75N)201)	DL	.C75H)402)	DL	.C75P	DI	C75D	DL	C75R	DL	.C75B
Cap.pF		(0		((The second second	(0	0603)	((0805)	((7	(and the same of
Cap.pF	Code	Tol.	Rated WVDC	Tol.	Rated WVDC	Tol.	Rated WVDC	Tol.	Rated WVDC	Tol.	Rated WVDC	Tol.	Rated WVDC
0.1	OR1												
0.2	OR2												
0.3	OR3												
0.4	OR4												
0.5	OR5												
0.6	OR6												
0.7	OR7												
0.8	OR8				FOU								
1.0	0R9	e e			50V								
1.1	1R0 1R1				Code								
1.2	1R2				500								
1.3	1R3	0			200V								
1.4	1R4				or								
1.5	1R5	Α,		Α,	201	Α,		A,					
1.6	1R6	В,		В,	250V	В,		В,				20	
1.7	1R7	C,		C,	Code	C,		C,				Α,	
1.8	1R8	D.	25V	D.	251	D.		D.				В,	
1.9	1R9		Code		200							C,	
2.0	2R0		250									D.	
2.1	2R1		100.00000										
2.2	2R2									В,			
2.4	2R4									C,			
2.7	2R7									D.			
3.0	3R0												
3.3	3R3												
3.6	3R6	e e					250V		250V		500V		
3.9	3R9						Code		Code		Code		
4.3	4R3						251		251				500V
4.7	4R7						201		22.		501		Code
5.1	5R1												501
5.6	5R6												
6.2	6R2												or
6.8	6R8	В,		В,	50V	Α,							1000V
7.5	7R5	C.		С,	Code	В,		В,					Code
8.2	8R2	Ç.		D.	500	C.		C.					102
9.1	9R1				or								
10	100	8			200V								
11	110	F,											
12	120				Code								
13	130	G,			201								
15	150	J.		F,									
16 18	160			G,		F,		F,		G,		F,	
20	180).	J.		G,		G,		J.		G,	
22	200			-3.6		J.		J.				J.	
24	220 240	1				100						1000	
27	270												
30	300	1			50V								
33	330				Code 500								
36	360				500								
39	390	1											
43	430	1											
47	470												
47	470		1										

◆Capacitance & Rated Voltage Table

Rated WVDC Code 510 560 620 680 750	DL (0	C75N 201) Rated WVDC	Tol.	C75H 0402) Rated WVDC	DL (C	C75P (603)	DI (i	C75D 0805)	DL (0	C75R (708)	DL (1	.C75B 1111)
510 560 620 680	Tol.	Rated WVDC	Tol.	Rated	-							
560 620 680				WVDC	Tol.	Rated WVDC	Tol.	Rated WVDC	Tol.	Rated WVDC	Tol.	Rated
560 620 680											0 1	
620 680	1											500
680					F,	250V				500V		Cod
	1				G,	Code			G,	Code		501 1000
	1				J.	251			J.	501		Cod
820							F,	250V				102
910							G,	Code				102
101							J.	251				
111	1						30.00					300
121]											Cod
131	1											301
151	1										F,	600
161											G,	Cod
181											J.	601
201]											
221												
241						ľ						200
271												Cod
301												201
331												500
361												Cod
391												501
431												
471												
511												100 Cod
561											-	500
621											11	100 Cod 101 500 Cod 501
681											J.	501
751												Cod 500
821												or 300
911												Cod
102												301
	151 161 181 201 221 241 271 301 331 361 391 431 471 511 561 621 681 751 821 911	151 161 181 201 221 241 271 301 331 361 391 431 471 511 561 621 681 751 821 911	151 161 181 201 221 241 271 301 331 361 391 431 471 511 561 621 681 751 821 911	151 161 181 201 221 241 271 301 331 361 391 431 471 511 561 621 681 751 821 911	151 161 181 201 221 241 271 301 331 361 391 431 471 511 561 621 681 751 821 911	151 161 181 201 221 241 271 301 331 361 391 431 471 511 561 6621 681 751 821 911	151 161 181 201 221 241 271 301 331 361 391 431 471 511 561 6621 681 751 821 911	151 161 181 201 221 241 271 301 331 361 391 431 471 511 561 662 681 751 821 911	151 161 181 201 221 241 271 301 331 361 391 431 471 511 561 662 681 751 821 911	151 161 181 201 221 241 271 301 331 361 391 431 471 511 561 6621 681 751 821 911	151 161 181 201 221 241 271 301 331 361 391 431 471 511 561 621 681 751 821 911	151 161 181 201 221 241 271 301 331 361 391 431 471 511 561 621 681 751 821 911

◆ Performance

Item	Specifications					
Quality Factor (Q)	Greater than 2,000 at 1 ± 0.1MHz					
Insulation Resistance (IR)	10 ⁵ Megohms min. @ +25°C at rated WVDC. 10 ⁴ Megohms min. @ +125°C at rated WVDC.					
Rated Voltage	See Rated Voltage Table					
Dielectric Withstanding Voltage (DWV)	250% of rated voltage for 5 seconds.					
Operating Temperature Range	−55 °C to +150 °C Notes: For higher temperature, please contact with Dalicap.					
Temperature Coefficient (TC)	0 ±30ppm/℃					
Capacitance Drift	$\pm 0.2\%$ or ± 0.05 pF, whichever is greater.					
Piezoelectric Effects	None					

♦Environmental Tests

Item	Specifications	Method			
Thermal Shock	DWV: the initial value IR: Shall not be less than 30% of the initial value Capacitance change:	MIL-STD-202, Method 107, Condition A. At the maximum rated temperature stay 15 minutes. The time of removing shall not be more than 5 minutes. Perform the five cycles.			
Moisture Resistance	no more than 0.5% or 0.5pF. whichever is greater.	MIL-STD-202, Method 106.			
Humidity (steady state) DWV: the initial value IR: the initial value Capacitance change: no more than 0.3% or 0.3pF. whichever is greater.		MIL-STD-202, Method 103, Condition A, with 1.5 Volts D.C. applied wh subjected to an environment of 85°C with 85% relative humidity for 24 hours minimum.			
IR: Shall not be less than 30% of the initial value Capacitance change: no more than 2.0% or 0.5pF. whichever is greater.		MIL-STD-202, Method 108, for 2000 hours, at 125°C. 200% of Rated Voltage for Capacitors, Rated Voltage ≤500VDC 120% of Rated Voltage for Capacitors, 500VDC < Rated Voltage ≤1250VDC 100% of Rated Voltage for Capacitors, Rated Voltage >1250VDC			

◆Tape & Reel Specifications

	A0 (mm)	B0 (mm)	K0 (mm)	W (mm)	P0 (mm)	P1 (mm)	T (mm)	F (mm)	Qty/min	Qty/reel	Tape Material
0201-H	0.40	0.70	(a=0)	8.00	4.00	2.00	0.42	3.50	1000	15000	Paper
0402-H	0.70	1.20	8 - 8	8.00	4.00	2.00	0.65	3.50	1000	10000	Paper
0603-H	1.05	1.80		8.00	4.00	4.00	0.95	3.50	500	4000	Paper
0708-H	1.90	2.65	2.20	8.00	4.00	4.00	0.25	3.50	500	1000	Plastic
0805-H	1.45	2.30	0.95	8.00	4.00	4.00	0.22	3.50	500	3000	Plastic
0805-H	1.37	2.20	1.20	8.00	4.00	4.00	0.22	3.50	500	3000	Plastic
0805-V	1.35	2.25	1.35	8.00	4.00	4.00	0.22	3.50	500	1000	Plastic
1111-H	2.85	3.50	1.95	8.00	4.00	4.00	0.25	3.50	500	2000	Plastic
1111-H	2.85	3.60	2.40	8.00	4.00	4.00	0.25	3.50	500	2000	Plastic
1111-V	2.30	3.55	2.70	12.00	4.00	4.00	0.40	5.50	500	1500	Plastic

Horizontal Orientation

Vertical Orientation

◆ Product Features

Low ESR, High Working Voltage, High RF Power, High Self-Resonance Frequency.

◆Product Applications

Typical Circuit Applications: High Power Filter Networks, Mixers, Couplers, Matching Networks, Output Coupling, Antenna Coupling, DC blocking, Bypass.

Typical Applications Field: VHA/UHF/Microwave Communication Systems, Mobile Base Stations,
Repeaters, Wireless Broadcasting Equipments, Radio Stations,
Radar, WiMAX, Satellite Communications.

♦ Part Numbering

① Series: Dalicap 85 Series Low ESR Microwave Capacitor, Temperature Coefficient: 0 ± 30 ppm/ $^{\circ}$ C.

2 Dimensions Code

unit:inch(millimeter)

	DLC85H		DLC85C	DLC85E
Length	. 041±. 004	.110010~+.025	. 230 010 [~] +. 025	. 380 010~+. 015
	(1. 05±0. 10)	(2.79-0.25~0.63)	(5. 84-0. 25 [~] +0. 64)	(9. 65-0. 25~+0. 38)
Width	. 020±. 004	.110±.015	. 250 (-, 010 [~] +, 020)	. 380±. 010
	(0. 51±0. 10)	(2.79±0.38)	(6, 35-0, 25 [~] +0, 51)	(9. 65±0. 25)
Thickness	. 020±. 004	.102	.200	. 190
	(0. 51±0. 10)	(2.60) max	(5.08) max	(4. 83) max

③ Rated Capacitance

Capacitance is less than 10pF; for example: 1R0=1.0pF, R denotes decimal point.

Capacitance greater than 10pF; for example: 101=100pF, the third number is the power of 10.

00

00

DLC85 Series Low ESR,RF/Microwave Ceramic Capacitors

4 Tolerance

Code	Α	В	С	D	F	G	J
Tolerance	±0.05pF	±0.1pF	±0.25pF	±0.5pF	±1%	±2%	±5%

⑤ Termination Type

Code	W	Р
Туре	Nickel, Plated 100% Sn(RoHS)	Copper, Plated 100% Sn(RoHS)

Code	Rated Voltage(V)	Code	Rated Voltage(V)
2	200	2	20
01	500	0	00
5	600	2	25
01	1000	25	00
6		2	36

① Laser Marking

X denotes Marking. Capacitance is less than 10pF; for example: the marking of 1.0pF is 1R0. 72

Capacitance is not less than 10pF; for example: the marking of 10ppF is 101.

N denotes no marking.

® Packaging Type

72 2

	85H	85B	85C	85E
T: Horizontal Taping	√	√	√	√
B: Bulk packaging in a bag		√	√	√
TV: Vertical Taping		√	√	√

◆Performance Requirements

Capacitors are designed and manufactured to meet the requirements of MIL-PRF-55681 and MIL-PRF-123.

♦ All products are in compliance with RoHS instruction.

♦Capacitance & Rated Voltage Table

	Rated				Size(inch)	01		
\	WVDC	E1	COE	2				Б	LC85E
Cap.pF			DLC85 DLC85 DLC85C (2225)						
Cap.pF	Code	Tol.	Rated WVDC	Tol.	Rated WVDC	Tol.	Rated WVDC	Tol.	Rated WVDC
0.1	OR1		WWDC		VVVDC	2115	WVDC	10000000	WVDC
0.2	OR2								
0.3	OR3								
0.4	OR4								
0.5	OR5								
0.6	OR6								
0.7	OR7								
0,8	OR8								
0.9	OR9								
1.0	1R0								
1.1	1R1								
1.2	1R2								
1,3	1R3								
1.4	1R4								
1.5	1R5								
1.6	1R6	Α.		Α,					
1.7	1R7	В.		В,					
1,8	1R8								
1.9	1R9	C.		C.					
2.0	2R0	D.		D.					
2.1	2R1								
2.2	2R2								
2.4	2R4								
2.7	2R7								
3,0	3R0 3R3		2001		5001			-	
3.6	3R6		200V		500V				
3.9	3R9		Code		Code	Α.			
4.3	4R3		201		501	В,			
4.7	4R7				or 1500V	C.			
5,1	5R1					D,			
5,6	5R6				Code				
6.2	6R2				152				
6.8	6R8								
7.5	7R5								
8.2	8R2						3600V	Α,	
9.1	9R1						Code	В,	
10	100						362	C.	
11	110							D.	7200V
12	120							400.00	Code
13	130								722
15	150	F.							
16	160	G.		F.		F,			
18	180	J.		G.		G,			
20	200	100		J.		J.			
22	220			k		k			
27	240			8		58			
30	270								
33	300								
36	360			ų.				F.	
39	390							G.	
43	430							J,	
47	470							k	

♦Capacitance & Rated Voltage Table

	Rated WVDC	Tol.	C85) Rated WVDC	(LC85C 2225)		.C85E (838)
				-	LLLJ	1,5	
Tol.	WVDC	Tol.	WVDC		Datad		
				Tol.	Rated WVDC	Tol.	Rated WVDC
			500V Code	- 4			
			Code				
			501				7200V
			or				Code
1			1500V				722
1			Code				
ı			152				
1			Section 1.		2500V		
1			300V Code		Code		
1			301		252		
1			or				
1			1000V				
1			Code				
1			102				
1		F,	1	F.			3600\
1		G,	200V	G,			Code
1		J,	Code	J.			362
1		k,	201	k,		F,	
1			or			G,	
1			600V				
			Code			J,	
			601		1000V	k	
					Code		
			100 V		102		
			Code				
			101				
			or				
			300V				
			Code				
			301				2500V
4							Code
-							252
1					600V		
-					Code		
1					601		
1							
1					500V		
					Code		
					501		2000\
1							Code
							202
							202
						500V Code 501	Code

◆Performance

Item	Specifications			
Quality Factor (Q)	Greater than 2,000 at 1 \pm 0.1MHz (DLC85H \times DLC85B) Greater than 5,000 at 1 \pm 0.1MHz (DLC85C \times DLC85E)			
nsulation Resistance (IR)	10^5 Megohms min. @ +25°C at rated WVDC. 10^4 Megohms min. @ +125°C at rated WVDC.			
Rated Voltage	See Rated Voltage Table			
Dielectric Withstanding Voltage (DWV)	250% of rated voltage for 5 seconds.			
Operating Temperature Range	−55 °C to +125 °C Notes: For higher temperature, please contact with Dalicap.			
Temperature Coefficient (TC)	0 ± 30ppm/℃			
Capacitance Drift	$\pm 0.2\%$ or ± 0.05 pF, whichever is greater.			
Piezoelectric Effects	None			

◆Environmental Tests

Item	Specifications	Method		
Thermal Shock	DWV: the initial value IR: Shall not be less than 30% of the initial value Capacitance change: no more than 0.5% or 0.5pF.	MIL-STD-202, Method 107, Condition A. At the maximum rated temperature stay 15 minutes. The time of removing shall not be more than 5 minutes. Perform the five cycles.		
Moisture Resistance	whichever is greater.	MIL-STD-202, Method 106.		
Humidity (steady state)	DWV: the initial value IR: the initial value Capacitance change: no more than 0.3% or 0.3pF. whichever is greater.	MIL-STD-202, Method 103, Condition A, with 1.5 Volts D.C. applied while subjected to an environment of 85°C with 85% relative humidity for 240 hours minimum.		
IR: Shall not be less than 30% of the initial value Capacitance change: no more than 2.0% or 0.5pF. whichever is greater.		MIL-STD-202, Method 108, for 2000 hours, at 125℃. 200% of Rated Voltage for Capacitors, Rated Voltage ≤500VDC 120% of Rated Voltage for Capacitors, 500VDC < Rated Voltage ≤1250VDC 100% of Rated Voltage for Capacitors, Rated Voltage >1250VDC		

◆ Product Features

Ultra-Low ESR, High Working Voltage, High RF Power, High Self-Resonance Frequency.

◆ Product Applications

Typical Circuit Applications: High Power Filter Networks, Mixers, Couplers, Matching Networks, Output Coupling, Antenna Coupling, DC blocking, Bypass.

Typical Applications Field: VHA/UHF/Microwave Communication Systems, Mobile Base Stations,
Repeaters, Wireless Broadcasting Equipments, Radio Stations,
Radar, WiMAX, Satellite Communications.

◆Part Numbering

① Series: Dalicap 60 Series Low ESR Microwave Capacitor, Temperature Coefficient: 0 ± 30ppm/℃.

2 Dimensions Code

unit:inch(millimeter)

	DLC60H	DLC60P	DLC60D	
Length	$.040 \pm .004$.063 ± .006	.078 ± .010	
	(1.02 ± 0.10)	(1.60 ± 0.15)	(2.00 ± 0.25)	
Width	$.020 \pm .004$.031±.006	.049±.010	
	(0.51 ± 0.10)	(0.80±0.15)	(1.25±0.25)	
Thickness 0.020 ± 0.004 0.000 ± 0.004 0.000 ± 0.000		.031±.006 (0.80±0.15)	.040 ± .006 (1.02 ± 0.15)	

③ Rated Capacitance

Capacitance is less than 10pF; for example: 1R0=1.0pF, R denotes decimal point.

Capacitance greater than 10pF; for example: 101=100pF, the third number is the power of 10.

4 Tolerance

Code	А	В	С	D	F	G	J
Tolerance	±0.05pF	±0.1pF	±0.25pF	±0.5pF	±1%	±2%	±5%

⑤ Termination Type

Code	W
Туре	Nickel, Plated 100% Sn(RoHS)

® Rated Voltage

Code	Rated Voltage(V)
201	200
251	250

① Laser Marking

 $X\ denotes\ Marking.\ Capacitance\ is\ less\ than\ 10pF;\ for\ example:\ the\ marking\ of\ 1.0pF\ is\ 1R0.$

Capacitance is not less than 10pF; for example: the marking of 100pF is 101.

N denotes no marking.

Packaging Type

	60H	60P	60D
T: Horizontal Taping	V	✓	√
B: Bulk packaging in a bag		√	√
TV: Vertical Taping			√

♦ Performance Requirements

Capacitors are designed and manufactured to meet the requirements of MIL-PRF-55681 and MIL-PRF-123.

◆All products are in compliance with RoHS instruction.

♦Capacitance & Rated Voltage Table

	Rated			Siz	e(inch)		
Cap.pF	WVDC		DLC60H (0402)	DLC60P (0603)			LC60D (0805)
Cap.pF	Code	Tol.	Rated WVDC	Tol.	Rated WVDC	Tol.	Rated WVDC
0.1	OR1		WW.		WWW.		WVDC .
0.2	OR2						
0.3	OR3						
0.4	OR4						
0.5	OR5						
0.6	OR6						
0.7	OR7						
0.8	OR8						
0.9	OR9						
1.0	1R0						
1.1	1R1						
1.2	1R2						
1.3	1R3						
1.4	1R4	*		3		-	
1.5	1R5	Α,		Α,		Α,	
1.6	1R6	В,		В,		В,	
1.7	1R7	C.		C.		C,	
1,8	1R8	D.		D.		D.	
1.9	1R9						
2.0	2R0						
2.1	2R1						
2.2	2R2				- Control III		
2.4	2R4				250V		250V
2.7	2R7		200V		Code		Code
3.0	3R0		Code		251		251
3,3	3R3		201				
3.6	3R6						
3.9	3R9						
4.3	4R3						
4.7	4R7						
5.1	5R1						
5,6	5R6	-	-				
6.2	6R2	В,		В,			
7.5	6R8 7R5	C.				В,	
8.2	8R2			C,		C.	
9.1	9R1	D.		D,		102.00	
10	100						
11	110						
12	120						
13	130						
15	150						
16	160	F,					
18	180	G,		F.		F.	
20	200	J.		G,		G,	
22	220			J.		J.	
24	240						
27	270						
30	300						
33	330						
36	360						
39	390						
43	430						
47	470						

♦Capacitance & Rated Voltage Table

	Rated WVDC			Size(inc	ch)		
Cap.pF	WVDC	DLC (04	60H 02)	DLC (06	609 603)	DLC6 (080	0D (5)
Cap.pF	Code	Tol.	Rated WVDC	Tol.	Rated WVDC	Tol.	Rated WVDC
51	510		WVDC		WVDC	79303	VVVDC
56	560						
62	620			F,	250V		
68	680			G,	Code		
75	750	().			251		
82	820	1		J.		F,	250V
91	910	li .				G,	Code
100	101					J.	251
110	111					J.	
		8					
120	121						
130	131	ly I					
150	151						
160	161						
180	181						
200	201	e.					
220	221						
240	241	b					
270	271						
300	301						
330	331						
360	361						
390	391						
430	431						
470	471						
510	511						
560	561	ľ					
620	621						
680	681						
750	751						
820	821						
910	911						
1000	102	10					
		(A.					

◆ Performance

Item	Specifications
Quality Factor (Q)	Greater than 2,000 at $1 \pm 0.1 \text{MHz}$
Insulation Resistance (IR)	10 ⁵ Megohms min. @ +25 °C at rated WVDC. 10 ⁴ Megohms min. @ +125 °C at rated WVDC.
Rated Voltage	See Rated Voltage Table
Dielectric Withstanding Voltage (DWV)	200% of rated voltage for 5 seconds.
Operating Temperature Range	−55 °C to +125 °C Notes: For higher temperature, please contact with Dalicap.
Temperature Coefficient (TC)	0 ±30ppm/℃
Capacitance Drift	$\pm 0.2\%$ or ± 0.05 pF, whichever is greater.
Piezoelectric Effects	None

♦Environmental Tests

Item	Specifications	Method
Thermal Shock	DWV: the initial value IR: Shall not be less than 30% of the initial value Capacitance change: no more than 0.5% or 0.5pF.	MIL-STD-202, Method 107, Condition A. At the maximum rated temperature stay 15 minutes. The time of removing shall not be more than 5 minutes. Perform the five cycles.
Moisture Resistance	whichever is greater.	MIL-STD-202, Method 106.
Humidity (steady state)	DWV: the initial value IR: the initial value Capacitance change: no more than 0.3% or 0.3pF. whichever is greater.	MIL-STD-202, Method 103, Condition A, with 1.5 Volts D.C. applied while subjected to an environment of 85°C with 85% relative humidity for 240 hours minimum.
Life	IR: Shall not be less than 30% of the initial value Capacitance change: no more than 2.0% or 0.5pF. whichever is greater.	MIL-STD-202, Method 108, for 2000 hours, at 125 °C. 200% of Rated Voltage for Capacitors, Rated Voltage ≤500VDC 120% of Rated Voltage for Capacitors, 500VDC < Rated Voltage ≤1250VDC 100% of Rated Voltage for Capacitors, Rated Voltage > 1250VDC

Broadband Ceramic Capacitors

◆ Product Features

Series	Typical operating frequency range	Insertion Loss	Plated Material	Packaging Type	
(.010 " × .005 ")01005BB104MW4R0	16KHz(-3dB) to >67GHz	<1dB,typical		40K pcs/reel, lower quantities in cut tape	
(.020" × .010")0201BB104KW160	16KHz(-3dB) to >40GHz	<1dB,typical	A (C (P 115)	15K pcs/reel,	
(.020 " × .010 ")0201BB103KW250	16KHz(-3dB) to >32GHz	<1dB,typical	Au/Sn (RoHS)	lower quantities in cut tape	
(.040 " × .020 ")0402BB103KW500	16KHz(-3dB) to 40GHz	<1dB,typical	Au/Sn (RoHS)	10K pcs/reel,	
(.040 " × .020 ")0402BB104KW500	16KHz(-3dB) to 50GHz	<1.2dB,typical	Au/Sii (Kons)	lower quantities in cut tape	
(.080 " × .050 ")0805BB103KW101	16KHz(-3dB) to 3GHz	<0.25dB,typical	Ni/Sn(RoHS)		

◆Mechanical Dimensions

unit:inch(millimeter)

		Capacitor Dimensions					
Outlines	Code	Length (L)	Width (W)	Thick. (T)	(S)		
	01005	.016 ± .001 (0.40 ± 0.03)	.008 ± .001 (0.20 ± 0.03)	.008±.001 (0.20±0.03)	.005(0.13)min		
W L	0201	.023 ± .001 (0.58 ± 0.03)	.012 ± .001 (0.30 ± 0.03)	.0118(0.30)max	.0078(0.20)min		
745	0402	.040 ± .004 (1.016 ± 0.102)	.020 ± .004 (0.508 ± 0.102)	.024(0.61)max	.016(0.406)min		
	0805	.080 ± .006 (2.03 ± 0.15)	.050±.006 (1.27±0.15)	.040(1.02)max	.044(1.12)min		

◆Electrical Specifications

Item			Series			
Rated Voltage	01005BB104 MW4R0	0201BB104 KW160	0201BB103 KW250	0402BB103 KW500	0402BB104 KW500	0805BB103 KW101
	4WVDC	16WVDC	25WVDC	50WVDC	50WVDC	100WVDC
Capacitance	100nF	100nF	10nF	10nF	100nF	10nF
Operating Temperature Range.	-55°C to +85°C		-55℃	C to +125℃		
Insulation Resistance (IR)	10 ¹¹ Ω min. @ +	25℃ @ rated \	NVDC			
Dielectric Withstanding Voltage (DWV)	250% of rated voltage for 5 seconds.					
Temperature Coefficient (TC)	±15%					

♦Part Numbering

Broadband Ceramic Capacitors

◆Introduction

There are a number of circuits that require coupling RF signals or bypassing them to ground while blocking DC over extraordinarily large RF bandwidths. The applications for which they are intended typically require small, surface-mountable (SMT) units with low insertion losses, reflections, and impedances across RF frequencies extending from the tens of KHz to the tens of GHz. and temperatures typically ranging from -55 to +85°C. This note focuses on a particular implementation of these devices -- multilayer ceramic capacitors (MLCCs)- and how to obtain the best performance when they're used on various substrates.

Broadband capacitors are used in the "signal integrity" market -- optoelectronics/high-speed data; ROSA/TOSA (Transmit/Receive optical subassemblies); SONET (Synchronous Optical Networks); broadband test equipment - as well as in broadband microwave and millimeter wave amplifiers (MMICs, GaN transistors) and oscillators. The basic requirement in the former is to produce an output waveform that closely replicates an input waveform, typically a train of digital pulses, as shown in Fig.1.

Fig.1"Signal Integrity"- output replication of input

While RF and microwave devices are typically measured in the frequency domain, digital systems are usually characterized in the time domain, and so it is necessary to make a connection between the two (Fig.2).

FREQUENCY DOMAIN

- Insertion loss
- Reflection

Fig.2 Frequency domain and time domain parameters

TIME DOMAIN

- Rise and fall times
- Eve opening
- Jitter

Product Features

Non-Magnetic, Suitable for MRI and other equipment requiring non-magnetic.

♦Part Numbering

①C: General Purpose Non-Magnetic Multilayer Ceramic Capacitors

2 Dimensions

unit: millimeter

Series	L	W	Т	B(Min)	B(Max)
0603	1.60 ± 0.10	0.80 ± 0.10	0.80 ± 0.10	0.20	0.50
0805	2.00 ± .020	1.20 ± .020	1.40	0.25	0.60
1206	3.20 ± .020	1.60 ± .020	1.40	0.25	0.60
1210	3.20 ± .020	2.50 ± .020	2.00	0.25	0.70

3 Temperature Coefficient

CG: 0 ± 30ppm/℃

X: ±15%

A Rated Capacitance

Capacitance is less than 10pF; for example: 1R0=1.0pF, R denotes decimal point.

Capacitance greater than 10pF; for example: 101=100pF, the third number is the power of 10.

⑤ Tolerance

Code	В	С	D	G	J	К
Tolerance	±0.1pF	±0.25pF	±0.5pF	±2%	±5%	±10%

Code	Rated Voltage(V)	Code	Rated Voltage(V)
250	25	251	250
500	50	501	500
101	100	102	1000
201	200	202	2000

① Laser Marking

P: 100% Sn Solder over Copper Plating (RoHS Compliant)

® Packaging Type

T: Tape carrier packing

	A0 (mm)	B0 (mm)	K0 (mm)	W (mm)	P0 (mm)	P1 (mm)	T (mm)	F (mm)	Qty/min	Qty/reel	Tape Material
0603	1.05	1.80	0.90	8.00	4.00	4.00	0.90	3.50	1000	4000	Paper
0805	1.40	2.20	1.20	8.00	4.00	4.00	0.22	3.50	1000	3000	Plastic
1206	1.91	3.51	1.30	8.00	4.00	4.00	0.25	3.50	1000	3000	Plastic
1210	2.85	3.50	1.95	8.00	4.00	4.00	0.25	3.50	1000	3000	Plastic

◆Capacitance & Rated Voltage Table

unit: V

CG			0603	}			08	05				1206					12	10		
Code.	25	50	100	200	250	50	100	200	250	50	100	200	250	500	50	100	200	250	500	1000
1R0																				
1R2																			47	
1R5																				
1R8																				
2R2																				
2R7																				
3R3																				
3R9																				
4R7																				
5R6																				
6R8																				
8R2																				
100																				
120						F														
150																				
180																				
220																				
270												1 1								
330												1-1								
390																				
470																				
560																				
680																				
820												1-1								
101																				
121								4												
151																				
181																				
221						H													H	
271																				
331																				
391																				
471																				
561																				
681																				
821																				
102																				

♦Capacitance & Rated Voltage Table

unit: V

X7R			0603	3			08	805				1206				12	210	uriit	
Code.	25	50	100		250	50	100		250	50	100	200	 500	50	100			500	1000
331																			
471																			
681																			
821										H				4					
102																	1		
152														Į.					
222																			
332		j																	
472										T		- 1		9					
682																			
103												- 1							
153																			
223																			
333																			
473																			
683																			
104																			
154																			
224																			
334										Ì									
474																			
684																			
105																			
		4.5																	
												,							

♦ Specifications and Test Methods

No.	Item	Specification	Test Method						
1	Operating Temperature	C0G: −55℃ ~+125℃ X7R: −55℃ ~+125℃							
2	Appearance	No defects or abnormality	Visual inspection: ×10 microscope.						
3	Dimensions	See the previous pages	Callipers inspection						
4	Capacitance	Shall be Within the applicable tolerance specified.							
5	D.F.	C0G: Cap ≥ 30pF, Q ≥ 1000; Cap < 30pF, Q ≥ 400+20C X7R: D.F. ≤ 2.5%	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
6	Insulation Resistance (IR)	No less than $10G\Omega$ or $500M\Omega\mu$ F, whichever is smaller.	Voltage: DC Rated Voltage Charging Time: 1~2 min Charge/discharge current: 50mA max. Measurement Temperature: 25°C Measurement Humidity: 75%						
7	Dielectric Withstanding Voltage (DWV)	Shall be no evidence of breakdown or visible evidence of arcing or damage.	1. Test Voltage: 250% of Rated Voltage, Rated Voltage ≤ 500VDC 150% of Rated Voltage, 500VDC < Rated Voltage ≤ 1250VDC 120% of Rated Voltage, Rated Voltage > 1250VDC 2. Applied Time: 1s to 5 s 3. Charge/discharge current: 50mA max.						

♦Specifications and Test Methods

No.	Item	Specification	Test Method
8	Temperature Coefficient	Type Temperature coefficient ppm/ \mathbb{C} COG 0 ± 30 Type Temperature Characteristics X7R $\pm 15\%$	Conduct the five cycles according to the temperatures as below.
9	Adhesive Strength of Termination	No removal of the terminations or other defect should occur.	Pressurizing force: 01R5/0201: 2N; 0402/0603: 5N; 0805/1206/1210/1812: 10N Test time: 10±1 sec.
10	Bending Strength	No cracking shall occur. Cap change: C0G: within ±5% or 0.5pF whichever is larger X7R: within ±12.5%	Solder the capacitor on test jig (glass epoxy board). Then apply a force in the direction shown in below Flexure: 1mm; Holding time: 5±1s Pressurizing Speed:1.0mm/s Pressurize Flexure Capacitance meter 45 45 Fig.2 (in mm)
11	Solderability of Termination	Shall be at least 85 percent covered with a smooth solder coating.	Immerse the capacitor in a eutectic solution requirem temperature (230±5°C) for 2±0.5 seconds. Capacito shall be immersed to a depth of 10mm.

♦ Specifications and Test Methods

No.	Item		Specification	Test Method
		Appearance	No evidence of mechanical damage or delamination or exposed.	
12	Resistance	Capacitance Change △C	C0G: Within $\pm 2.5\%$ or $0.25pF$ (Whichever is larger) X7R: Within $\pm 12.5\%$.	Immerse the capacitor in a eutectic solution at 265 ± 5 °C for 10 ± 1 seconds. Capacitor shall be
	Soldering Heat	D.F.	To meet initial requirement.	immersed to a depth of 10mm. And following a minimum 10 minutes to
		Insulation Resistance	No less than $10G\Omega$ or $500M\Omega\mu$ F, Whichever is smaller.	maximum 24 hours cooling period.
		Appearance	No evidence of mechanical damage	
		Capacitance Change △C	C0G: Within $\pm 2.5\%$ or $0.25pF$ (Whichever is larger) X7R: Within $\pm 7.5\%$.	Fix the capacitor to the supporting jig in the same manner and under the same conditions as (11). Perform the five cycles according to the four heat treatments listed in the following table. Set it for 24 ± 2 hours at room temperature.
13	Temperature Cycle	D.F.	To meet initial requirement.	Step Temperature(°C') Time(minutes)
		Insulation Resistance	No less than $10G\Omega$ or $500M\Omega\mu\text{F}$, Whichever is smaller.	$ \begin{array}{c cccc} 1 & -55 \circ (0 \bullet -3 \circ) & 30 \pm 3 \\ 2 & 2549 & 2 \sim 3 \\ 3 & 125 \circ (0 \sim -3) & 30 \pm 3 \\ 4 & 25 \circ & 2 \sim 3 \end{array} $

◆Product Features

- 1. Non-Magnetic chip resistors by copper plating on middle termination.
- 2. Suited for reflow and flow solder.
- 3. Suitable for no lead soldering.
- 4. Lead free, Meet RoHS compliant.

◆Product Applications

MRI medical equipment, Measurement instrument, other non-magnetic applications.

◆Part Number

♦Configuration

Construction of Chip-Resistor

◆Dimensions

	Size	L	W	С	D	Т
L ×C	0603	1.60 ± 0.10	0.80 ± 0.10	0.30 ± 0.20	0.30 ± 0.20	0.45 ± 0.10
V// 103 //	0805	2.00 ± 0.10	1.25 ± 0.10	0.40 ± 0.20	0.40 ± 0.20	0.50 ± 0.10
T. ♣ D	1206	3.10±0.10	1.60 ± 0.10	0.50 ± 0.20	0.50 ± 0.25	0.55 ± 0.10

◆Power Derating Curve

◆Rated Value

Size	Rated	RCWV	Overload	Tolerance	Temperature	Resistan	ce Range	Standard Resistance
3126	Power At 70°C	Max.	Voltage Max.	Tolerance	Coefficient ppm/°C	Min.	Max.	Value
0503	4.44.00.44	F0\/	1001	± 1%(F)	±100	1Ω	10ΜΩ	E-96
0603	1/10W	50V	100V	±5%(J)	±200	0Ω&1Ω	10ΜΩ	E-24
0805	1/0\4/	150//	2001/	± 1%(F)	±100	1Ω	10ΜΩ	E-96
0805	1/8W	150V	300V	±5%(J)	±200	0Ω&1Ω	10ΜΩ	E-24
1206	1/4\4/	2001/	400V	± 1%(F)	±100	1Ω	10ΜΩ	E-96
1200	1206 1/4W 200V		4000	±5%(J)	±200	0Ω&1Ω	10ΜΩ	E-24

Jumper: 0603 size maximum resistance <50mΩ and rated current<1A.

0805, 1206 size maximum resistance \leq 50m Ω and rated current \leq 2A.

 $1\,\Omega\sim10\,\Omega$: Temperature Coefficient of Resistance for 0603, 0805, 1206 = -300 \sim +500ppm/°C .

♦Soldering Temperature Curve

◆Resistance Marking

R100

4 digit marking for $\pm 1\%$.

For example: $1R00 = 1\Omega$; $R100 = 100m\Omega$; $R047 = 47m\Omega$;

R10

3 digit marking for 0603 $\pm 1\%$.

For example: $1R0 = 1\Omega$; $R10 = 100m\Omega$; $R50 = 500m\Omega$;

E-24 Series

473

3 digit marking for $\pm 5\%$ E24.

For example: $473 = 47k\Omega$; $1R5 = 1.5\Omega$; $0 = 0\Omega$;

E-96 Series

1542

4 digit marking for E96.

For example: $1542 = 15.4k\Omega$; $22R1 = 22.1\Omega$;

02C

3 digit marking for E96-0603.

For example: $02C = 102 \times 100 = 10.2k \Omega$;

♦0603 1% Marking Table

Code	E48	E96									
01	100	100	25	178	178	49	316	316	73	562	562
02		102	26		182	50		324	74		576
03	105	105	27	187	187	51	332	332	75	590	590
04		107	28		191	52		340	76		604
05	110	110	29	196	196	53	348	348	77	619	619
06		113	30		200	54		357	78		634
07	115	115	31	205	205	55	365	365	79	649	649
08		118	32		210	56		374	80		665
09	121	121	33	215	215	57	383	383	81	681	681
10		124	34		221	58		392	82		698
11	127	127	35	226	226	59	402	402	83	715	715
12		130	36		232	60		412	84		732
13	133	133	37	237	237	61	422	422	85	750	750
14		137	38		243	62		432	86		768
15	140	140	39	249	249	63	442	442	87	787	787
16		143	40		255	64		453	88		806
17	147	147	41	261	261	65	464	464	89	825	825
18		150	42		267	66		475	90		845
19	154	154	43	274	274	67	487	487	91	866	866
20		158	44		280	68		499	92		887
21	162	162	45	287	287	69	511	511	93	909	909
22		165	46		294	70		523	94	(i	931
23	169	169	47	301	301	71	536	536	95	953	953
24		174	48		309	72		549	96		976

♦Standard Resistance Value

E3		1	0		22				47								
E6	1	0	1	15		22 3		33	4	7				68			
E12	! 10 12 15 18		18	22	27	33	39	47	56	68	82						
E24	10	11	12	13	15	16	18	20	22	24	27	30	33	36	39	43	47
E24	51	56	62	68	75	82	91										
	100	102	105	107	110	113	115	118	121	124	127	130	133	137	140	143	147
	150	154	158	162	165	169	174	178	182	187	191	196	200	205	210	215	221
E96	226	232	237	243	249	255	261	267	274	280	287	294	301	309	316	324	332
200	340	348	357	365	374	383	392	402	412	422	432	442	453	454	475	487	499
	511	523	536	549	562	576	590	604	619	634	649	665	681	698	715	732	750
	768	787	806	825	845	866	887	909	931	953	975						

◆Tape and Reel Package

unit:millimeter

	A (mm)	B (mm)	W (mm)	F (mm)	E (mm)	P0 (mm)	P1 (mm)	P2 (mm)
0603	1.10±0.20	1.90 ± 0.20	8.00 ± 0.30	3.50 ± 0.05	1.75 ± 0.10	4.00 ± 0.10	4.00 ± 0.10	2.00 ± 0.05
0805	1.65 ± 0.20	2.40 ± 0.20	8.00 ± 0.30	3.50±0.05	1.75 ± 0.10	4.00 ± 0.10	4.00±0.10	2.00 ± 0.05
1206	2.00±0.20	3.60 ± 0.20	8.00 ± 0.30	3.50±0.05	1.75 ± 0.10	4.00 ± 0.10	4.00±0.10	2.00 ± 0.05

unit:millimeter

	A (mm)	N (mm)	C (mm)	D (mm)	B (mm)	G (mm)	T (mm)	Qty/reel
0603	178.0 ± 2.0	60.0 ± 0.5	13.0 ± 0.5	20min	2.0 ± 0.5	10.0 ± 1.5	14.9max	5000
0805	254.0 ± 2.0	100.0 ± 1.0	13.5 ± 0.5	20min	2.0 ± 0.5	10.0 ± 1.5	14.9max	10000
1206	330.0 ± 2.0	100.0 ± 1.0	13.5±0.5	20min	2.0 ± 0.5	10.0 ± 1.5	14.9max	20000

♦Specification and Test Methods

Item	Specifications	Test Methods
DC Resistance	F: ±1%; J: ±5%;	IEC 60115-1/JIS C 5201-1, Clause 4.5. Measure the resistance value.
Short time Overload	J: $\Delta R \le \pm (2\%+0.1\Omega)$ F: $\Delta R \le \pm (1\%+0.05\Omega)$	IEC 60115-1/JIS C 5201-1, Clause 4.13. 2.5 x Rated voltage or Max. Overload Voltage for 5 second. Measure resistance after 30 minutes.
Solderability	Over 95% of termination must be covered with (Sn+Ag+Cu)	IEC 60115-1/JIS C 5201-1, Clause 4.17. After immersing flux, dip in the $245\pm2^{\circ}\mathrm{C}$ molten solder bath for $3\pm0.5\mathrm{sec}$.
Resistance to Solder Heat	$\begin{array}{ll} J_{:} & \DeltaR \leqslant \pm \; (1\% + 0.1\Omega) \\ F_{:} & \DeltaR \leqslant \pm \; (0.5\% + 0.05\Omega) \\ \text{No mechanical damage}. \end{array}$	IEC 60115-1/JIS C 5201-1, Clause 4.18. With $260\pm5^\circ\!\!\mathrm{C}$ for 10 ± 1 sec.
Temperature Coefficient of Resistance(TCR)	Refer to the rating table information.	IEC 60115-1/JIS C 5201-1, Clause 4.8. Test temperature point is -55℃ and +155℃.
Load Life Humidity	J: Δ R≤ ± (3%+0.1Ω) F: Δ R≤ ± (1%+0.05Ω)	IEC 60115-1/JIS C 5201-1, Clause 4.24. Maintain the temperature of the resistor at $40\pm2^{\circ}\mathrm{C}$ and $90\%\sim95\%$ R.H. with the rated voltage applied. Cycle ON for 1.5 hours and OFF for 0.5hour for 1000(-0 \sim +48) hours. After 1-4 hours, measure the resistance value.
Load Life	J: $\Delta R \le \pm (3\%+0.1\Omega)$ F: $\Delta R \le \pm (1\%+0.05\Omega)$	IEC 60115-1/JIS C 5201-1, Clause 4.25. Permanent resistance change after 1000(-0~+48) hours (1.5 hours ON, 0.5 hour OFF) at RCWV or Max. Keep the resistor at 70 ± 2°C.
Temperature Cycle	J: Δ R \leq \pm (1%+0.1 Ω) F: Δ R \leq \pm (0.5%+0.05 Ω) No mechanical damage.	IEC 60115-1/JIS C 5201-1, Clause 4.19. Repeat 5 cycles as follows -55 °C (30 Min.), 25 °C (2-3 Min.), +155 °C (30 Min.).
Insulation Resistance	Between termination and coating must be over 1000M Ω_{\odot}	IEC 60115-1/JIS C 5201-1, Clause 4.6. Test voltage: 100 ± 15V.
Bending Strength	J: Δ R \leq \pm (1%+0.1 Ω) F: Δ R \leq \pm (0.5%+0.05 Ω) No mechanical damage.	IEC 60115-1/JIS C 5201-1, Clause 4.33. Resistance change after bended on the 90mm PCB. Bend: 3mm for 0603, 0805. 2mm for 1206.

Single Layer Chip Ceramic Capacitor

General SLC	Margin SLC	Surface Mounting SLC	Array SLC	Multi-PAD SLC
SG	SM	SS	SA	SP
			S. C.	
Applications: RF, microwave and millimeter wave. Capacitance: 0.1 ~ 10000pF	Applications: RF, microwave and millimeter wave. Capacitance: 0.1 ~ 10000pF	high precision single layer series capacitor	an array consisting of multiple single-layer capacitors, suitable for multiple coupling and bypassing	multiple capacitance value, binary tunable single layer capacitor, suited for tuning design or microwave integrated circuit

Meet Standard: MIL-PRF-49464C

♦Inspection Item

Group	Item	Test Method	Test Condition
A1	Burn	-	S#3
A1	Capacitance		100%
A1	Dissipation factor(D.F.)		100%
A1	IR	7-	100%
A1	DWV	· · · · · · · · · · · · · · · · · · ·	100%
A3	Visual	Method 2032 of MIL-STD-883	(#)
B1	Bond strength	Method 2011 of MIL-STD-883	D, 5 grams minimum with .001" dia wire
B1	Die shear strength	Method 2019 of MIL-STD-883	Limit per MIL-STD-883, Figure 2019-4
B2	Temperature coefficient		
C1	Immersion	Method 107,104 of MIL-STD-202	Immersion: B
C2	Resistance to solder heat	Method 210 of MIL-STD-202	310°C for 5 seconds
C3	Humidity, steady state, low voltage	Method 103 of MIL-STD-202	Condition A
C4	Life	Method 108 of MIL-STD-202	Applied 200% rated voltage, 2000 hours

Single Layer Chip Ceramic Capacitor

◆Product Applications

DC blocking, RF bypass, filtering, decoupling, microwave integrated circuit

Product Features

Reliable performance

Small size, down to 10mil*10mil

Microwave and millimeter wave, frequency up to 100GHz

Suited for conductive adhesive, AuSn eutectic soldering, gold wire bonding

◆Part Number

①SLC Series Capacitors

General SLC	Margin SLC	Surface Mounting SLC
SG	SM	SS
Applications RF, microwave and millimeter wave. Capacitance: 0 1 ~ 10000pF	Applications RF, microwave and millimeter wave. Capacitance: 0.1 ~ 10000pF	High precision single layer series capacitor

^②Size

The first two digits represent length, the second two digits represent width, Unit: mil; for example: 1010, length is 10mil (0.254mm), width is10mil (0.254mm).

Single Layer Ceramic Capacitor

3 Dielectric Coefficient

dielectric coefficient<10, K9R6=9.6; dielectric coefficient ≥10, K301=300.

Dielectric type	Dielectric constant	Temperature Coefficient Code	Temperature Coefficient	Temperature Range	Max.D.F	IR(Ω) Min@25°C
	15	COG	0±30ppm	-55 ~ +125°C	0.15%@1MHz	1012
	35	COG	0±30ppm	-55 ~ +125°C	0.15%@1MHz	1012
T I	85	COG	0±30ppm	-55 ~ +125°C	0.15%@1MHz	1012
Type I	220	P3L	-1500±500ppm	-55 ~ +125°C	0.25%@1MHz	1012
	300	P3L	-1500±500ppm	-55 ~ +125°C	0.7%@1MHz	1011
	600	S3L	-3300±1000ppm	-55 ~ +125°C	1.2%@1MHz	1011
	900	T3M	-4700±500ppm	-55 ~ +125°C	1.2%@1MHz	1011
	1300	X7S	±22%	-55 ~ +125 ° C	4%@1kHz/1MHz	1011
	1500	X7S	±22%	-55 ~ +125°C	4%@1kHz/1MHz	1011
Type II	2500	X7R	±15%	-55 ~ +125°C	4%@1kHz/1MHz	1011
	4000	X7R	±15%	-55 ~ +125° C	4%@1kHz/1MHz	1011
	9000	Y5V	-82% ~ +22%	-30 ~ +85 ° C	4%@1kHz/1MHz	1011
	15000	X7R/X7S	±15%/±22%	-55 ~ +125° C	2.5%@1kHz/1MHz	1010
Type III	25000	X7R/X7S	±15%/±22%	-55 ~ +125°C	2.5%@1kHz/1MHz	1010
	35000	X7R/X7S	±15%/±22%	-55 ~ +125°C	2.5%@1kHz/1MHz	1010
	45000	X7R/X7S	±15%/±22%	-55 ~ +125°C	2.5%@1kHz/1MHz	109

4 Metallization

		Sputter Layer	Pla	ting Layer		
Code	Metal	Thickness	Metal	Thickness		
М	TiW/Au	0.01 ~ 0.05/0.03 ~ 0.05	Au	≥2		
Р	TiW/Ni/Au	0.01 ~ 0.05/0.1 ~ 0.2/0.03 ~ 0.05	Au	≥2		
Т	TaN/TiW/Au	0.03 ~ 0.10/0.1 ~ 0.2/0.03 ~ 0.05	Au	≥2		
F	TaN/TiW/Ni/Au	0.03 ~ 0.10/0.01 ~ 0.05/0.1 ~ 0.2/0.03 ~ 0.05	Au	≥2		
Н	TaN/TiW/Pt/Au	0.03 ~ 0.10/0.01 ~ 0.05/0.1 ~ 0.2/0.03 ~ 0.05	Au	≥2		
D	TiW/Pt/Au	0.01 ~ 0.05/0.1 ~ 0.2/0.03 ~ 0.05	Au	≥2		
Е	Ti/Pt/Au	0.01 ~ 0.05/0.1 ~ 0.2/0.03 ~ 0.05	Au	≥2		
×	TiW/Ni/Ag	0.01 ~ 0.05/0.1 ~ 0.2/0.10 ~ 0.20	-	-		
L	frontside: Ti/Pt/Au backside: Ti/Pt	1 0 01 ~ 0 05/0 1 ~ 0 2/0 03 ~ 0 05				

Note: please contact Dalicap for non-standard Au thickness and metallization system.

Single Layer Ceramic Capacitor

⑤ Capacitance

Less than 10pF, 1R0=1.0pF; No less than 10pF, 101=100pF.

© Tolerance

Code	А	В	С	D	F	G	J	К	E	М	0	Z	V
Tolerance	±0.05pF	±0.1pF	±0.25pF	±0.5pF	±1%	±2%	±5%	±10%	±15%	±20%	±40%	-20% ~ +80%	0 ~ +100%

⑦ Rated Voltage

Code	Rated Voltage	Code	Rated Voltage
А	10	6	63
В	16	1	100
2	25	C	120
5	50		

® Packaging Type

W: Waffle Packaging; G: Stick Box; R: Film Ring.

♦SG/SM Series Capacitance Table

Dimensi	on Code			10 x.254)				12 k.305)				15 k.381)				20 x.508)	
Rated	voltage	16V	25V	50V	100V	16V	25V	50V	100V	16 V	25V	50V	100V	16V	25V	50V	100V
Cap.pF	Tolerance																
0.1	А	K350	K350	K350	K350	K350	K350	K350	K350								
0.3	А	K850	K850	K850	K850	K850	K850	K850	K850	K350	K350	K350	K350				
0.8	В	K301	K301	K301	K301	K850	K850	K850	K850	K850	K850	K850	K850	K850	K850	K850	K850
1.0	В	K301	K301	K301	K301	K301	K301	K301	K301	K850	K850	K850	K850	K850	K850	K850	K850
2.2		K601	K601	K601	K601	K301	K301	K301	K301	K301	K301	K301	K301	K301	K301	K301	K301
3.3		K132	K132	K132	K132	K601	K601	K601	K601	K601	K601	K601	K601	K301	K301	K301	K301
4.7	С	K132	K132	K132	K132	K132	K132	K132	K132	K601	K601	K601	K601	K301	K301	K301	K301
6.8	D	K252	K252	K252	K252	K132	K132	K132	K132	K132	K132	K132	K132	K601	K601	K601	K601
8.2		K252	K252	K252	K252	K132	K132	K132	K132	K132	K132	K132	K132	K601	K601	K601	K601
10		K252	K252	K252	K252	K252	K252	K252	K252	K132	K132	K132	K132	K601	K601	K601	K601
15		K402	K402	K402	K402	K252	K252	K252	K252	K252	K252	K252	K252	K132	K132	K132	K132
18		K402	K402	K402	K402	K402	K402	K402	K402	K252	K252	K252	K252	K132	K132	K132	K132
20		K402	K402	K402	K402	K402	K402	K402	K402	K252	K252	K252	K252	K132	K132	K132	K132
22		K402	K402	K402	K402	K402	K402	K402	K402	K252	K252	K252	K252	K132	K132	K132	K132
33		K902	K902	K902	K902	K902	K902	K902	K902	K402	K402	K402	K402	K252	K252	K252	K252
39		K153	K153	K153	K153	K902	K902	K902	K902	K402	K402	K402	K402	K252	K252	K252	K252
47	:	K153	K153	K153	K153	K902	K902	K902	K902	K402	K402	K402	K402	K402	K402	K402	K402
50		K153	K153	K153	K153	K902	K902	K902	K902	K402	K402	K402	K402	K402	K402	K402	K402
68	3	K153	K153	K153	K153	K153	K153	K153	K153	K902	K902	K902	K902	K402	K402	K402	K402
82		K253	K253	K253	K253	K153	K153	K153	K153	K902	K902	K902	K902	K402	K402	K402	K402
100	ş .	K253	K253	K253		K153	K153	K153	K153	K153	K153	K153	K153	K902	K902	K902	K902
120	J	K353	K353	K353		K153	K153	K153		K153	K153	K153	K153	K902	K902	K902	K902
150	К	K353	K353			K253	K253	K253		K153	K153	K153	K153	K153	K153	K153	K153
180	М	K453				K353	K353	K353		K253	K253	K253		K153	K153	K153	K153
200		K453				K353	K353			K253	K253	K253		K153	K153	K153	K153
220						K453				K253	K253	K253		K153	K153	K153	
270						K453				K353	K353	K353		K153	K153	K153	
330										K353	K353			K253	K253	K253	
390										K453				K253	K253	K253	
470														K353	K353		
560														K353	K353		
680														K453			
820	å s																
1000																	
1200																	
2200																	
10000				Тур	e I Dielec	tric		Тур	e II Dielec	tric		Тур	e III Diele	ctric			

Note: 1) Different colours correspond to different Dielectrics, It is possible to change Dielectric constant. 2) Special Capacitance and rated voltage, Please contact Dalicap.

SG\SM Series SLC

♦SG/SM Series Capacitance Table

Dime Co		2525 (.635x.635) 16V 25V 50V 100V					30 (.762)	30 x.762)			35 (.889)				40 (1.016)	40 (1.016))50 x1.270)	
Rated v	oltage	16V	25V	50V	100V	16V	25V	50V	100V	16V	25V	50V	100V	16V	25V	50V	100V	16V	25V	50V	100V
Cap.pF	Tolerance																				
0.1	А																				
0.3	Α																				
0.8	В	K350	K350	K350	K350	K350	K350	K350	K350												
1.0	В	K850	K850	K850	K850	K350	K350	K350	K350	K350	K350	K350	K350								
2.2		K850	K850	K850	K850	K850	K850	K850	K850	K350	K350	K350	K350	K350	K350	K350	K350				
3.3		K850	K850	K850	K850	K850	K850	K850	K850	K850	K850	K850	K850	K850	K850	K850	K850	K350	K350	K350	K350
4.7	С	K301	K301	K301	K301	K850	K850	K850	K850	K850	K850	K850	K850	K850	K850	K850	K850	K350	K350	K350	K350
6.8	D	K301	K301	K301	K301	K301	K301	K301	K301	K301	K301	K301	K301	K850	K850	K850	K850	K850	K850	K850	K850
8.2		K301	K301	K301	K301	K301	K301	K301	K301	K301	K301	K301	K301	K850	K850	K850	K850	K850	K850	K850	K850
10		K301	K301	K301	K301	K301	K301	K301	K301	K301	K301	K301	K301	K301	K301	K301	K301	K850	K850	K850	K850
15		K601	K601	K601	K601	K601	K601	K601	K601	K301	K301	K301	K301	K301	K301	K301	K301	K301	K301	K301	K301
18		K601	K601	K601	K601	K601	K601	K601	K601	K301	K301	K301	K301	K301	K301	K301	K301	K301	K301	K301	K301
20	1	K132	K132	K132	K132	K601	K601	K601	K601	K601	K601	K601	K601	K301	K301	K301	K301	K301	K301	K301	K301
22		K132	K132	K132	K132	K601	K601	K601	K601	K601	K601	K601	K601	K301	K301	K301	K301	K301	K301	K301	K301
33		K132	K132	K132	K132	K132	K132	K132	K132	K601	K601	K601	K601	K601	K601	K601	K601	K301	K301	K301	K301
39		K132	K132	K132	K132	K132	K132	K132	K132	K132	K132	K132	K132	K601	K601	K601	K601	K301	K301	K301	K301
47		K252	K252	K252	K252	K132	K132	K132	K132	K132	K132	K132	K132	K601	K601	K601	K601	K601	K601	K601	K601
50		K252	K252	K252	K252	K132	K132	K132	K132	K132	K132	K132	K132	K132	K132	K132	K132	K601	K601	K601	K601
68		K252	K252	K252	K252	K252	K252	K252	K252	K132	K132	K132	K132	K132	K132	K132	K132	K601	K601	K601	K601
82		K402	K402	K402	K402	K252	K252	K252	K252	K252	K252	K252	K252	K132	K132	K132	K132	K132	K132	K132	K132
100		K402	K402	K402	K402	K402	K402	K402	K402	K252	K252	K252	K252	K252	K252	K252	K252	K132	K132	K132	K132
120		K402	K402	K402	K402	K402	K402	K402	K402	K252	K252	K252	K252	K252	K252	K252	K252	K132	K132	K132	K132
150	j	K902	K902	K902	K902	K402	K402	K402	K402	K402	K402	K402	K402	K252	K252	K252	K252	K132	K132	K132	K132
180	K	K902	K902	K902	K902	K402	K402	K402	K402	K402	K402	K402	K402	K402	K402	K402	K402	K252	K252	K252	K252
200	м	K902	K902	K902	K902	K402	K402	K402	K402	K402	K402	K402	K402	K402	K402	K402	K402	K252	K252	K252	K252
220	101	K902	K902	K902	K902	K902	K902	K902	K902	K402	K402	K402	K402	K402	K402	K402	K402	K252	K252	K252	K252
270		K153	K153	K153	K153	K902	K902	K902	K902	K902	K902	K902	K902	K402	K402	K402	K402	K252	K252	K252	K252
330		K153	K153	K153	K153	K902	K902	K902	K902	K902	K902	K902	K902	K402	K402	K402	K402	K402	K402	K402	K402
390		K153	K153	K153	K153	K153	K153	K153	K153	K902	K902	K902	K902	K902	K902	K902	K902	K402	K402	K402	K402
470		K253	K253	K253	KISS	K153	K153	K153	K153	K153	K153	K153	K153	K902	K902	K902	K902	K402	K402	K402	K402
560		K253	K253	K253		K153	K153	K153	K153	K153	K153	K153	K153	K902	K902	K902	K902	K902	K902	K902	K902
680		K253	K253	K253		K253	K253	K253	K133	K153	K153	K153	K135	K153	K153	K153	K153	K902	K902	K902	K902
1000		K353	K353	KZ33		K253	K253	K253		K253	K253	K253		K153	K153	K153	K135	K153	K153	K153	K153
1200	3	K453	KJJJ			K353	K353	KEJJ		K253	K253	K253		K253	K253	K253		K153	K153	K153	K133
1500		N433				K453	KSSS			K353	K353	1/200		K253	K253	K253		K153	K153		
Section 2						N433				MON TOWN	Mary Colonia					K233			and the latest and th	K153	
1800										K353	K353			K353	K353			K153	K153	K153	
2200				Torri	. I Diel	ands.		- Transaction	6 0 Dist	K453		The same	UII Pist	K353				K253	K253		
10000	W 1000	Type I Dielectric Type					rpe II Dielectric Type III Dielectric				ctric										

Note: 1) Different colours correspond to different Dielectrics, It is possible to change Dielectric constant.

²⁾ Special Capacitance and rated voltage, Please contact Dalicap.

DALICAP PRODUCT MANUAL

♦SS Series Capacitance Table

	on Code	n Code 2010 (.508x.254)						20 x.508)				30 (x.762)				40 (.1.016)	
Rated	voltage	16V	25V	50V	100V	16V	25V	50V	100V	16V	25V	50V	100V	16V	25V	50V	100V
Cap.pF	Tolerance																
0.1	А	K850	K850	K850	K850	K350	K350	K350	K350							-	
0.3	А	K301	K301	K301	K301	K350	K350	K350	K350	K350	K350	K350	K350				
0.8	В	K601	K601	K601	K601	K850	K850	K850	K850	K350	K350	K350	K350	K350	K350	K350	K350
1.0	В	K601	K601	K601	K601	K301	K301	K301	K301	K850	K850	K850	K850	K350	K350	K350	K350
2.2		K132	K132	K132	K132	K301	K301	K301	K301	K850	K850	K850	K850	K850	K850	K850	K850
3.3		K252	K252	K252	K252	K601	K601	K601	K601	K301	K301	K301	K301	K850	K850	K850	K850
4.7	С	K402	K402	K402	K402	K601	K601	K601	K601	K301	K301	K301	K301	K301	K301	K301	K301
6.8	D	K402	K402	K402	K402	K132	K132	K132	K132	K601	K601	K601	K601	K301	K301	K301	K301
8.2		K402	K402	K402	K402	K132	K132	K132	K132	K601	K601	K601	K601	K301	K301	K301	K301
10		K402	K402	K402	K402	K132	K132	K132	K132	K601	K601	K601	K601	K301	K301	K301	K301
15		K902	K902	K902	K902	K252	K252	K252	K252	K132	K132	K132	K132	K601	K601	K601	K601
18		K902	K902	K902	K902	K252	K252	K252	K252	K132	K132	K132	K132	K601	K601	K601	K601
20		K153	K153	K153	K153	K252	K252	K252	K252	K132	K132	K132	K132	K601	K601	K601	K601
22		K153	K153	K153	K153	K402	K402	K402	K402	K132	K132	K132	K132	K132	K132	K132	K132
33		K253	K253	K253		K402	K402	K402	K402	K252	K252	K252	K252	K132	K132	K132	K132
39		K253	K253	K253		K402	K402	K402	K402	K252	K252	K252	K252	K132	K132	K132	K132
47		K353	K353			K902	K902	K902	K902	K402	K402	K402	K402	K252	K252	K252	K252
50		K353	K353			K902	K902	K902	K902	K402	K402	K402	K402	K252	K252	K252	K252
68		K453				K902	K902	K902	K902	K402	K402	K402	K402	K252	K252	K252	K252
82						K153	K153	K153	K153	K402	K402	K402	K402	K402	K402	K402	K402
100						K153	K153	K153	K153	K402	K402	K402	K402	K252	K252	K252	K252
120	j					K153	K153	K153	K153	K902	K902	K902	K902	K402	K402	K402	K402
150	К					K253	K253	K253	K253	K902	K902	K902	K902	K402	K402	K402	K402
180	М					K253	K253	K253	K253	K153	K153	K153	K153	K902	K902	K902	K902
200	10000					K353	K353	K353		K153	K153	K153	K153	K902	K902	K902	K902
220						K353	K353	K353		K153	K153	K153	K153	K902	K902	K902	K902
270						K453	K453			K153	K153	K153	K153	K153	K153	K153	K153
330						K453				K253	K253	K253	K253	K153	K153	K153	K153
390										K253	K253	K253		K153	K153	K153	K153
470										K353	K353	K353		K153	K153	K153	K153
560										K353	K353			K253	K253	K253	K253
680										K453				K253	K253	K253	
820														K353	K353	K353	
1000														K353	K353		
1200										ia.				K453			-
40555						20020		223				1,251		700			
10000				Тур	e I Dielectric		Type II Dielect		electric Type III Diele				ectric				

Note: 1) Different colours correspond to different Dielectrics , It is possible to change Dielectric constant. 2) Special Capacitance and rated voltage, Please contact Dalicap.

◆Product Application

DC blocking, RF bypass, filtering, decoupling, microwave integrated circuit

◆Product Feature

Integrated design for saving space and simplied assembling The total size is theoretically minimum 20mils×10 mils

◆Part Number

SA	1010	K301	Τ	1R0	В	1	G	6
T	Ţ	\top	T	T	Ţ	Ţ	\top	\top
1	2	3	4	(5)	6	7	8	9
Array SLC	Size	Dielectric Coefficient	Metallization	Capacitance	Tolerance	Rated Voltage	Packagir	ng Capacitor Quantity

①SLC Series Capacitors

SA Series Array SLC

②Size

The first two digits represent length, the second two digits represent width, Unit: mil; for example: 1010, length is 10mil (0.254mm), width is10mil (0.254mm)

3 Dielectric Coefficient

dielectric coefficient < 10, K9R6=9.6; dielectric coefficient ≥ 10, K301=300.

Dielectric type	Dielectric constant	Temperature Coefficient Code	Temperature Coefficient	Temperature Range	Max.D.F	IR(Ω) Min@25 °C
	15	COG	0±30ppm	-55 ~ +125°C	0.15%@1MHz	1012
	35	COG	0±30ppm	-55 ~ +125°C	0.15%@1MHz	1012
	85	COG	0±30ppm	-55 ~ +125°C	0.15%@1MHz	1012
Type I	220	P3L	-1500±500ppm	-55 ~ +125℃	0.25%@1MHz	1012
	300	P3L	-1500±500ppm	-55 ~ +125℃	0.7%@1MHz	1011
	600	S3L	-3300±1000ppm	-55 ~ +125°C	1.2%@1MHz	1011
	900	ТЗМ	-4700±500ppm	-55 ~ +125°C	1.2%@1MHz	1011
	1300	X7S	±22%	-55 ~ +125°C	4%@1kHz/1MHz	1011
	1500	X7S	±22%	-55 ~ +125° C	4%@1kHz/1MHz	1011
Type II	2500	X7R	±15%	-55 ~ +125℃	4%@1kHz/1MHz	1011
	4000	X7R	±15%	-55 ~ +125°C	4%@1kHz/1MHz	1011
	9000	Y5V	-82% ~ +22%	-30 ~ +85°C	4%@1kHz/1MHz	1011
	15000	X7R/X7S	±15%/±22%	-55 ~ +125℃	2.5%@1kHz/1MHz	1010
Turne III	25000	X7R/X7S	±15%/±22%	-55 ~ +125°C	2.5%@1kHz/1MHz	1010
Type III	35000	X7R/X7S	±15%/±22%	-55 ~ +125°C	2.5%@1kHz/1MHz	1010
	45000	X7R/X7S	±15%/±22%	-55 ~ +125℃	2.5%@1kHz/1MHz	109

4 Metallization

6.1		Sputter Layer	Plating Layer			
Code	Metal	Thickness	Metal	Thickness		
М	TiW/Au	0.01 ~ 0.05/0.03 ~ 0.05	Au	≥2		
Р	TiW/Ni/Au	0.01 ~ 0.05/0.1 ~ 0.2/0.03 ~ 0.05	Au	≥2		
T	TaN/TiW/Au	0.03 ~ 0.10/0.1 ~ 0.2/0.03 ~ 0.05	Au	≥2		
F	TaN/TiW/Ni/Au	0.03 ~ 0.10/0.01 ~ 0.05/0.1 ~ 0.2/0.03 ~ 0.05	Au	≥2		
Н	TaN/TiW/Pt/Au	0.03 ~ 0.10/0.01 ~ 0.05/0.1 ~ 0.2/0.03 ~ 0.05	Au	≥2		
D	TiW/Pt/Au	0.01 ~ 0.05/0.1 ~ 0.2/0.03 ~ 0.05	Au	≥2		
Е	Ti/Pt/Au	0.01 ~ 0.05/0.1 ~ 0.2/0.03 ~ 0.05	Au	≥2		
×	TiW/Ni/Ag	0.01 ~ 0.05/0.1 ~ 0.2/0.10 ~ 0.20		25		
L	frontside: Ti/Pt/Au backside: Ti/Pt	0.01 ~ 0.05/0.1 ~ 0.2/0.03 ~ 0.05	Au	≥2		

Note: please contact Dalicp for non-standard Au thickness and metallization system.

⑤ Capacitance

Less than 10pF, 1R0=1.0pF; No less than 10pF, 101=100pF.

6 Tolerance

Code	А	В	С	D	F	G	J	К	L	М	0	Z	V
Tolerance	±0.05pF	±0.1pF	±0.25pF	±0.5pF	±1%	±2%	±5%	±10%	±15%	±20%	±40%	-20% ~ +80%	0 ~ +100%

⑦ Rated Voltage

Code	Rated Voltage	Code	Rated Voltage
А	10	6	63
В	16	1	100
2	25	C	120
5	50		

® Packaging Type

W: Waffle Packaging; G: Stick Box; R: Film Ring.

Capacitor quantity

♦SA Series Array SLC

Dimensio	on Code	(.254x.254)					12	12 x.305)				15 x.381)			20 (.508:	20 k.508)			25 (.635)	25 c.635)	
Rated	oltage	16V	25V	50V	100V	16V	25V	50V	100V	16V	25V	50V	100V	16V	25V	50V	100V	16V	25V	50V	100V
Cap.pF	Tolerance																				
0.1	А	K350	K350	K350	K350	K350	K350	K350	K350												
0.3	А	K850	K850	K850	K850	K850	K850	K850	K850	K350	K350	K350	K350								
0.8	В	K850	K850	K850	K850	K850	K850	K850	K850	K850	K850	K850	K850	K850	K850	K850	K850	K350	K350	K350	K350
1.0	В	K301	K301	K301	K301	K850	K850	K850	K850	K850	K850	K850	K850	K850	K850	K850	K850	K850	K850	K850	K850
2.2		K301	K301	K301	K301	K301	K301	K301	K301	K301	K301	K301	K301	K301	K301	K301	K301	K850	K850	K850	K850
3.3		K601	K601	K601	K601	K601	K601	K601	K601	K301	K301	K301	K301	K301	K301	K301	K301	K301	K301	K301	K301
4.7	С	K601	K601	K601	K601	K601	K601	K601	K601	K601	K601	K601	K601	K301	K301	K301	K301	K301	K301	K301	K301
6.8	D	K132	K132	K132	K132	K132	K132	K132	K132	K601	K601	K601	K601	K601	K601	K601	K601	K601	K601	K601	K601
8.2		K132	K132	K132	K132	K132	K132	K132	K132	K132	K132	K132	K132	K601	K601	K601	K601	K601	K601	K601	K601
10		K132	K132	K132	K132	K132	K132	K132	K132	K132	K132	K132	K132	K601	K601	K601	K601	K601	K601	K601	K601
15		K252	K252	K252	K252	K252	K252	K252	K252	K132	K132	K132	K132	K132	K132	K132	K132	K132	K132	K132	K132
18		K252	K252	K252	K252	K252	K252	K252	K252	K252	K252	K252	K252	K132	K132	K132	K132	K132	K132	K132	K132
20		K402	K402	K402	K402	K252	K252	K252	K252	K252	K252	K252	K252	K132	K132	K132	K132	K132	K132	K132	K132
22		K402	K402	K402	K402	K252	K252	K252	K252	K252	K252	K252	K252	K132	K132	K132	K132	K132	K132	K132	K132
33		K402	K402	K402	K402	K402	K402	K402	K402	K402	K402	K402	K402	K252	K252	K252	K252	K252	K252	K252	K252
39		K902	K902	K902	K902	K402	K402	K402	K402	K402	K402	K402	K402	K402	K402	K402	K402	K252	K252	K252	K252
47		K902	K902	K902	K902	K902	K902	K902	K902	K402	K402	K402	K402	K402	K402	K402	K402	K252	K252	K252	K252
50		K902	K902	K902	K902	K902	K902	K902	K902	K402	K402	K402	K402	K402	K402	K402	K402	K402	K402	K402	K402
68		K153	K153	K153	K153	K902	K902	K902	K902	K902	K902	K902	K902	K402	K402	K402	K402	K402	K402	K402	K402
82		K153	K153	K153	K153	K153	K153	K153	K153	K902	K902	K902	K902	K902	K902	K902	K902	K402	K402	K402	K402
100		K153	K153	K153		K153	K153	K153	K153	K153	K153	K153	K153	K902	K902	K902	K902	K902	K902	K902	K902
120		K153	K153	K153		K153	K153	K153	K153	K153	K153	K153	K153	K902	K902	K902	K902	K902	K902	K902	K902
150	J	K253	K253	K253		K253	K253	K253		K153	K153	K153	K153	K153	K153	K153	K153	K902	K902	K902	K902
180	K	K253	K253	K253		K253	K253	K253		K153	K153	K153		K153	K153	K153	K153	K153	K153	K153	K153
200	М	K353	K353			K253	K253	K253		K253	K253	K253		K153	K153	K153	K153	K153	K153	K153	K153
220		K353	K353			K353	K353			K253	K253	K253		K153	K153	K153		K153	K153	K153	K153
270		K453				K353	K353			K253	K253	K253		K253	K253	K253		K153	K153	K153	
330						K453				K353	K353			K253	K253	K253		K253	K253	K253	
390						8				K453				K353	K353	K353		K253	K253	K253	
470										K453				K353	K353			K253	K253	K253	
560						s								K453				K353	K353		
680					-													K453			
1000																					
1200																					
1500																					
1800																					
2200																				7	
10000				Тур	e I Diele	ctric		Тур	e II Diele	tric		Тур	e III Diele	etric							

Note:1) Different colours correspond to different Dielectrics, It is possible to change Dielectric constant.

²⁾ Special Capacitance and rated voltage, Please contact Dalicap.

♦SA Series Array SLC

Dimensi	Dimension Code 3030 (.762x.762)					3535 (.889x.889)			1	40 (1.016)	40 x1.016)				50 x1.27)			70 (1.78	70 (1.78)		
Rated	voltage	16V	25V	50V	100V	16V	25V	50V	100V	16V	25V	50V	100V	16V	25V	50V	100V	16V	25V	50V	100V
Cap.pF	Tolerance																				
0.1	А																				
0.3	А																				
0.8	В	K350	K350	K350	K350	K350	K350	K350	K350	K350	K350	K350	K350	K350	K350	K350	K350				
1.0	В	K350	K350	K350	K350	K350	K350	K350	K350	K350	K350	K350	K350	K350	K350	K350	K350	K350	K350	K350	K350
2.2		K850	K850	K850	K850	K850	K850	K850	K850	K850	K850	K850	K850	K850	K850	K850	K850	K350	K350	K350	K350
3.3		K301	K301	K301	K301	K301	K301	K301	K301	K301	K301	K301	K301	K850	K850	K850	K850	K850	K850	K850	K850
4.7	c	K301	K301	K301	K301	K301	K301	K301	K301	K301	K301	K301	K301	K301	K301	K301	K301	K850	K850	K850	K850
6.8	D	K301	K301	K301	K301	K301	K301	K301	K301	K301	K301	K301	K301	K301	K301	K301	K301	K301	K301	K301	K301
8.2		K601	K601	K601	K601	K301	K301	K301	K301	K301	K301	K301	K301	K301	K301	K301	K301	K301	K301	K301	K301
10		K601	K601	K601	K601	K601	K601	K601	K601	K301	K301	K301	K301	K301	K301	K301	K301	K301	K301	K301	K301
15		K601	K601	K601	K601	K601	K601	K601	K601	K601	K601	K601	K601	K601	K601	K601	K601	K301	K301	K301	K301
18		K132	K132	K132	K132	K132	K132	K132	K132	K601	K601	K601	K601	K601	K601	K601	K601	K301	K301	K301	K301
20		K132	K132	K132	K132	K132	K132	K132	K132	K601	K601	K601	K601	K601	K601	K601	K601	K601	K601	K601	K601
22		K132	K132	K132	K132	K132	K132	K132	K132	K132	K132	K132	K132	K601	K601	K601	K601	K601	K601	K601	K601
33		K252	K252	K252	K252	K132	K132	K132	K132	K132	K132	K132	K132	K132	K132	K132	K132	K132	K132	K132	K132
39		K252	K252	K252	K252	K252	K252	K252	K252	K132	K132	K132	K132	K132	K132	K132	K132	K132	K132	K132	K132
47		K252	K252	K252	K252	K252	K252	K252	K252	K252	K252	K252	K252	K132	K132	K132	K132	K132	K132	K132	K132
50		K252	K252	K252	K252	K252	K252	K252	K252	K252	K252	K252	K252	K132	K132	K132	K132	K132	K132	K132	K132
68		K402	K402	K402	K402	K402	K402	K402	K402	K252	K252	K252	K252	K252	K252	K252	K252	K132	K132	K132	K132
82		K402	K402	K402	K402	K402	K402	K402	K402	K402	K402	K402	K402	K252	K252	K252	K252	K252	K252	K252	K252
100		K402	K402	K402	K402	K402	K402	K402	K402	K402	K402	K402	K402	K402	K402	K402	K402	K252	K252	K252	K252
120		K402	K402	K402	K402	K402	K402	K402	K402	K402	K402	K402	K402	K402	K402	K402	K402	K252	K252	K252	K252
150	1	K902	K902	K902	K902	K402	K402	K402	K402	K402	K402	K402	K402	K402	K402	K402	K402	K402	K402	K402	K402
180	к	K902	K902	K902	K902	K902	K902	K902	K902	K902	K902	K902	K902	K402	K402	K402	K402	K402	K402	K402	K402
200	М	K902	K902	K902	K902	K902	K902	K902	K902	K902	K902	K902	K902	K402	K402	K402	K402	K402	K402	K402	K402
220		K153	K153	K153	K153	K902	K902	K902	K902	K902	K902	K902	K902	K902	K902	K902	K902	K402	K402	K402	K402
270		K153	K153	K153		K153	K153	K153	K153	K902	K902	K902	K902	K902	K902	K902	K902	K402	K402	K402	K402
330		K153	K153	K153		K153	K153	K153		K153	K153	K153	K153	K902	K902	K902	K902	K902	K902	K902	K902
390		K253	K253	K253		K153	K153	K153		K153	K153	K153		K153	K153	K153	K153	K902	K902	K902	K902
470		K253	K253	K253		K253	K253	K253		K153	K153	K153		K153	K153	K153		K153	K153	K153	K153
560		K253	K253	K253		K253	K253	K253		K253	K253	K253		K153	K153	K153		K153	K153	K153	
680		K353	K353			K353	K353			K253	K253	K253		K253	K253	K253		K153	K153	K153	
1000		K453				K453				K353	K353			K353	K353	K353		K253	K253	K253	
1200										K453				K353	K353			K253	K253	K253	
1500														K453				K353	K353		
1800																		K453			
2200																					
10000				Тур	e I Dielec	ctric		Тур	e II Diele	ctric		Тур	e III Diele	ctric							

Note:1) Different colours correspond to different Dielectrics, It is possible to change Dielectric constant.
2) Special Capacitance and rated voltage, Please contact Dalicap.

SP Series Multi-Pad SLC

◆Product Applications

Matching networks, parallel resonance circuits, dielectric resonator tuning & coupling.

◆Product Features

Small geometric size is suitable for microwave circuit and is good for circuit design and adjustment SP Array SLC is mainly customized according to customer drawings and requirements;

Maximum overall size:10×10mm;

Minimum overall size:0.3×0.3mm;

Minimum machining gap:50µm,

Thickness: $0.15 \sim 0.25$ mm.

◆Part Number

SP	1010	K301	Т	1R0	В	1	G	6
\overline{T}	2	(3)	T	<u>T</u>	T ©	$\frac{1}{\sqrt{2}}$	 (8)	
Multi-	Size	Dielectric	Metallization	0	0	Rated		ng Capacito
PAD SLC		Coefficient				Voltage		Quantity

Single layer capactitor instructions

- 1. Single layer capacitor package and storage
- a)Single layer capacitors are packaged in waffle pack, adhesive box or blue film.
- b)The temperature of storage is -10 °Cto 40 °C, and the relative humidity is not more than 80%
- c)The storage surrounding environment is free of acidic, alkaline or other harmful gases.
- d)Single layer capacitors should be used within 12 months after reception, but should satisfy the storage conditions.
- 2.Circuit Design
- a)Check the use and installation environment, which should comply with the rated value and performances of the capacitor. Exceeding the specification will cause performance degradation, short circuit, open circuit, smoke or even fire and so on;
- b)Capacitors should be used within the allowable operating temperature, exceeding the maximum value, the insulation resistance will decrease, performance will decrease, and it will cause a short circuit and may lead to spontaneous combustion. This phenomenon is particularly prominent in high-frequency circuits. If the capacitor is in a "self-heating" circuit, please make sure that the temperature of the capacitor surface is within the maximum allowed;
- The capacitor should be used below the rated voltage. Under AC voltage or pulse voltage, make sure that the peak voltage does not exceed the rated voltage. Otherwise, it may affect the capacitor's endurance, and in extreme cases, it may smoke or catch fire.
- 3. Single layer capacitor pick and place

It is recommended to use vacuum nozzle or ceramic tweezers to pick up single layer capacitors to avoid scratching the electrode surface and damaging the ceramic.

- 4. Single layer capacitor installation
- a)For single layer capacitor bottom electrode installation, it is recommended to use eutectic

welding or conductive adhesive, the maximum welding temperature does not exceed 400°C. Eutectic welding: AuSn (80%/20%) or similar type of solder for eutectic welding, the solder is usually 25um thick, 1/2 the area of the capacitor.

Conductive adhesive: Use appropriate amount of conductive adhesive to make sure that no solder void.

b)For single layer capacitor top electrode installation, it is recommended to use the bonding process, recommended to use 18-38µm gold wire bonding. The bonding points must all be on the surface of the electrode.

Thin Film Circuit

◆Product Features

- 1. Sputtering technology, high reliability and ultra-stable performance, good consistency.
- 2.Designed and processed with 99.6% pure Al2O3 substrate, which has excellent insulation performance and low loss at high frequency.
- 3. Designed and processed with high-purity AIN substrate, which has excellent thermal conductivity.

◆Product Applications

Substrates for microwave/millimeter wave application, microwave/millimeter wave device, and high-speed optical communication device.

◆ Process Introduction

On the ceramic substrate, through magnetron sputtering, photoetching, dry wet etching, electroplating gold and other processes, the thin film components and metal lines are integrated to form high-precision circuit patterns with specific functions.

◆ Material Properties

Material	Chemical Composition	Purity	Color	Nominal Density (g/cm3)	Loss (1 MHz)	Dielectric Constant (1 MHz)	Thermal Conductivity (W/m° K)	CTE (10-6mm/°C)
Aluminum Oxide	Al ₂ O ₃	96%	White	3.7	0.0003	9.5±0.2	24,7	6.5~8.0 (25℃~800℃)
Aluminum Oxide (Polished)	Al ₂ O ₃	99.6%	White	3.87	0.0001	9.9±0.1	26.9	7.0~8.3 (25°C~1000°C)
Aluminum Oxide (As-fired)	Al ₂ O ₃	99.6%	White	3.87	0.0001	9.9±0.1	26.9	7.0~8.3 (25°C~1000°C)
Aluminum Nitride (Polished)	AIN	98%	Gray	3.28	0.001	8.8±0.2	170	4.6 (25℃~300℃)
Aluminum Nitride (As-fired)	AIN	98%	Gray	3.28	0.001	8.8±0.2	170	4.6 (25℃~300℃)

Thin Film Circuit

Design Guidelines

Substrate Materials

- 1. Material: alumina oxide, aluminum nitride, silicon, glass, etc.
- 2. Layout: 2 ~ 6 inches square or round (Typical: 2 inches square)
- 3. Thickness: 0.101 ~ 1.524 mm (Typical: 0.254, 0.381)
- 4.Roughness: polished(<0.08µm), as-fired(<0.2µm), lapped (customer specified)

Metal

- 1. Sputtering: Ti、TiW、TaN、Cu、Ni、Pt、Au
- 2. Electroplating: Au
- 3. Au thickness: 0.5 ~ 5µm

TaN Sheet Resistance

- 1. Sheet resistance: $25 \sim 200\Omega/\Box$ (Typical: $50\Omega/\Box$)
- 2. Resistance tolerance: $\pm 10\%$ (Typical: $\pm 20\%$)
- 3. Minimum resistor size: 50µm*50µm
- 4. Resistance TCR: -100±50ppm/°C @ -55°C ~ +125°C
- 5. Maximum service temperature: 350°C (<0.5 hours)

Graphic

- 1. Minimum line width: 10µm
- 2. Minimum line gap: 20µm
- 3. Line tolerance: $\pm 3\mu m$ (for non-critical areas $\pm 5\mu m$)

Metallized holes/slots

- 1. Hole diameter D: 0.5*T minimum
- 2. Spacing between via holes L: 1*T minimum
- 3. Hole to edge W: 1*T minimum
- 4. Hole to metal line H: 38.1µm minimum
- 5. Via hole to conductor edge G: 50.8µ minimum

Dimensions

1. Minimum size: 0.3mm*0.3mm

2. Tolerance: ± 0.05 mm

0505 (.055" x.055")

Drawing

1. Format: DXF, DWG

2. Length unit: mm

Detailed Design Guidelines

② TECH-INTER SAS

Z.A. Le Clos de Villarceaux 78770 THOIRY (FRANCE)

C Tel: +33 (0)1 34 94 20 40

Email: sales@tech-inter.eu

Site web : www.tech-inter.fr

Dalian Dalicap Technology Co., Ltd.

Address: No. 21 Jinyue Street, Dongjiagou Sub-district, Jinzhou District, Dalian, China.

Tel: +86 - 411- 87610004

Http://www.dalicap.com.cn

E-mail: dalicap@dalicap.com.cn

